
A TRIDENT SCHOLAR
oN PROJECT REPORT

0 NO. 223

"Computational Solutions to the Protein

Folding Problem"

L T -' 'r i

SEP 2 7 1994 ýV

UNITED STATES NAVAL ACADEMY
ANNAPOLIS, MARYLAND

94-30772

7i% document has been approved for public I
nkase and sale; its ditribution is unlimited.

94 9 26 100



U.S.N.A. - Trident Scholar project report; no. 223 (1994)

"Computational Solutions to the Protein

Folding Problem"

by

Midshipman Vann H. Walke, Class of 1994

U.S. Naval Academy

Annapolis, Maryland

Advisor: Associate Professor Andrew T. Phillips
Computer Science Department

Accepted for Trident Scholar Committee

Accc Jor ,

NTIS CR•S•F
DTIC TAO'

C hair Ufld Fr-0o1', t:i (I• u• S• t if ci. : co r ...... ..............
By . . . ....................

Date Distributic

Av; p

DIMC QUAL•'tTY i.,.'•D,$A ...

Dist

USNA-1531-



REPORT DOCUMENTATION PAGE Fur.,,cPom
OMB no. 0704-,0188

ui.~SNlm• q uite -- w hi eerttiqn~ et 1fm t1-4• is mtim •the te e•eee I1 et V •5 i mmle m the t) f (@•4Sl) ItqUctI. inm.~5~tee8

1. AGENCY USE OILY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

119 May 1994 1
4. TITLE AND SUBTITLE Computational solutions to the 5. FUNDING NUMBERS

protein folding problem

6. AUTHOR(S)

Vann H. Walke

7. PERFOMNG ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Naval Academy, Annapolis, MD RPT NUMBER USNA
Trident Scholar project
report; no. 223 (1994)

9. SPOS ORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

Accepted by the U.S. Trident Scholar Committee

12a. DISTRIBUTION/AVAILABILITY STATEMENT 1b. DISTRIBUTION COE

This document has been approved for public
release; its distribution is UNLIMITED.

13. ABSTRACT (Maximum 200 words)The protein folding problem attempts to predict the native, or folded, state of a

protein in three-dimensional apace, given its primary sequence of amino acids. One common approach for a solution is to
treat each complex amino acid as a single sphere, or "united atom," and to model each peptide linkage between residues
by a virtual bond between spheres. Computational efforts being examined rely on two major assumptions: 1) for any
specific molecular conformation, a corresponding potential energy function can be computed, and 2) the three-
dimensional, folded state corresponda to the global minimum of this energy function. The optimization method being used
to minimize the potential energy involves collecting a large number of conformera, each attained by finding a local
minimum of the potential energy function from a random starting point. The information from these conformers is then
used to form a convex quadratic global underestimating function for the potential energy of the known conformers. The
minimum of this underestimator is used to predict the global minimum for the function, allowing a localized conformer
search to be performed based on the predicted minimum. The now set of conformers generated by the localized search can
serve as the basis for another quadratic underestimation. After several repetitions, the global minimum can be found
with reasonable assurance. The conformer which lies at the global minimum represents the threa-dimensional folded state
of the molecule.

14. SUBJECT TOM 15. NUMBER OF PAGES

protein folding problem, global underestimator,
conformer, mathematical models 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATATION OF
OF REPORT THIS PAGE ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-2806-500 Standard Form 298 (Rev.2.89)



Computational Solutions to the

Protein Folding Problem

V. H. Walke

Abstract

The protein folding problem attempts to predict the native, or folded, state of a
protein in three-dimensional space, given its primary sequence of amino acids. One com-
mon approach for a solution is to treat each complex amino acid as a single sphere, or
"united atom," and to model each peptide linkage between residues by a virtual bond
between spheres. Computational efforts being examined rely on two major assumptions:
1) for any specific molecular conformation, a corresponding potential energy function can
be computed, and 2) the three-dimensional, folded state corresponds to the global mini-
mum of this energy function. The optimization method being used to minimize the
potential energy involves collecting a large number of conformers, each attained by find-
ing a local minimum of the potential energy function from a random starting point. The
information from these conformers is then used to form a convex quadratic global under-
estimating function for the potential energy of the known conformers. The minimum of
this underestimator is used to predict the global minimum for the function, allowing a
localized conformer search to be performed based on the predicted minimum. The new set
of conformers generated by the localized search can serve as the basis for another qua-
dratic underestimation. After several repetitions, the global minimum can be found with
reasonable assurance. The conformer which lies at the global minimum represents the
three-dimensional folded state of the molecule.
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I. Introduction

A. The Protein Folding Problem
One of the most important and most difficult problems in biophysics and biochem-

istry is the protein folding problem. In the late 1950's Christian B. Anfinsen and his col-

leagues at the National Institute of Health made the remarkable discovery that the folded

state of a protein was completely dependent on the one-dimensional linear sequence (i. e.

"primary" sequence) of amino acids from which the protein is constructed. External fac-

tors, such as enzymes present at the time of folding, have no effect on the final or native

state of the protein. This led to the formulation of the protein folding problem: Given a

known primary sequence of amino acids, what would be its native, or folded, state in 3-

dimensional space? Despite over thirty years of research, a solution to the protein folding

problem remains elusive (Richards 1991).

A solution to the protein folding problem would provide immeasurable benefits to

the biotechnology field. Many new products in the biotechnology industry are novel pro-

teins. It is already possible to design "custom" amino acid sequences quickly with DNA

sequence analysis; however, the inability to predict the folded state of the protein, which

determines the protein's functionality, forces biotechnology industries to rely on long,

expensive methods of development. When Eli Lilly made his first attempts at producing

insulin for diabetes, a biologically inactive material resulted, which resembled scrambled

eggs. While he was able to splice the human gene for insulin into DNA molecules of bac-

teria and get them to synthesize the needed protein chain, incorrect folding caused the pro-

cess to fail. Only after considerable expenses in time and money was the correct folded

sequence found. Currently, the three-dimensional folded state of a protein can only be
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found using X-ray crystallography, an enormously expensive and time consuming process

which can take as much as several months or even years.

While methods have been developed which attempt to predict a folded protein's

secondary structure (distinct sections having characteristic shapes including helices, beta

strands, and turns), these methods rarely yield information which provides a description of

the tertiary structure (the folded state). As a result, the protein folding problem has gener-

ally been thought to be, if not completely insoluble, not likely to be solved for a very long

time.

B. Possible Solutions to the Protein Folding Problem

Recent events have renewed hope for a solution to the problem. Several successful

predictions have been made and announced before the experimental structures were

known. While most of these predictions have been made with a blend of a human expert's

abilities and computer assistance, fully automated methods have shown promise for pro-

ducing previously unattainable accuracy. Advances in theory, experiment, and computing

power, coupled with growing interest from industry, have kindled new optimism for a

solution to the protein folding problem (Richards 1991, Benner and Gerloff 1993).

Computational attempts to solve the folding problem can be divided into two basic

strategies: human based and machine based predictions. The first relies on a close interac-

tion between a human expert and a computer model which simulates the behavior of the

protein. One such system was developed by Mark C. Surles at the University of North

Carolina at Chapel Hill. The graphical modeling system he developed, "Sculpt", pro-

vides an environment in which an expert can graphically manipulate the protein into a

folded state. Through the use of the Sculpt program, the expert can insure that the protein
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structure complies with established biochemical rules (Surles 1992). While this approach

is a huge improvement over a purely human based analysis of protein structure, it still

remains dependent on possibly enormous amounts of time spent by an expert.

Machine based prediction strategies attempt to lessen the reliance on experts by

developing a completely computational method. Such approaches are generally based on

two assumptions. First, there exists a potential energy function for the protein; and second,

the folded state corresponds to the structure with the lowest potential energy (minimum of

the potential energy function) and is thus in a state of thermodynamic equilibrium. This

view is supported by in-vitro observations that proteins can successfully refold from a

variety of denatured states. The alternate assumption is that the native state of the protein

may be at a local energy minimum which can be separated from the true global energy

minimum by a large kinetic barrier. Recent studies of the co-Lytic protease revealed two

conformational forms, active and inactive, separated by just such a kinetic barrier (Baker

et al. 1992). While the active, or stable, form of the molecule occurred at the global mini-

mum, a catalyst is required to change the "molten globule" found at the inactive state into

the final state for the protein. This evidence seems to support the view that the folded state

may not lie at the global minimum in every case. Ruben A. Abagyan raises two questions

related to this phenomenon (Abagyan 1993):

(1) Could a metastable state have all the features of the normal protein?

(2) If it could, is this behavior typical for all proteins?

Currently there is no clear evidence for a positive answer to the first question. The oc-Lytic

experiments, while raising important questions, do not provide evidence concerning the

properties of the normal protein (the final state for ct-Lytic occurred at the global mini-
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mum). The second question can be answered definitively in the negative. Small single-

domain proteins do fall into their lowest energy state. Evolutionary theory also supports a

folded state at a global energy minimum. Protein sequences have evolved under pressure

to perform certain functions, which for most known occurrences require stable, unique

and compact structures. Unless specifically required for a certain function, there was no

biochemical need for proteins to hide their global minimum behind a large kinetic energy

barrier. While kinetic blocks may occur, they should be limited to special proteins devel-

oped for certain functions, or occur randomly with the probability of kinetic blocks grow-

ing with problem size (Abagyan 1993).

C. Models for Computational Methods
Unfortunately, finding the "true" energy function of a protein, if one even exists, is

so unimaginably complicated that there are no means nor hope of determining it exactly.

With proteins ranging in size up to 1,053 amino acids (a collagen found in tendons), and

covering an almost infinite number of possible conformations, exhaustive conformational

searches will never be possible.

One possible way of finding the global energy minimum is to use a simplified

model of the protein system. By using a simplified model, the complexity of the problem

formulation could be reduced to an acceptable level for optimization techniques. Care

must be taken, however, to insure that the error included in such an approximation does

not drive the computational solution too far away from the true native state. Simplified

computational protein models can be currently divided into two major classes: lattice

restricted models and models in continuous space.

The first of these methods, lattice models, relies on constraining the position of the
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-amino acids to the vertices of a three-dimensional lattice. By limiting the possible posi-

tions for amino acid placement, lattice methods have the potential for large increases in

algorithm speed. This increase, however, is reliant on the quality of the grid developed. A

lattice with a very large number of vertices could provide an accurate model of the protein.

Unfortunately, this increase in accuracy carries a corresponding decrease in speed. Con-

versely, a very coarse lattice with relatively few vertices enables fast execution time, but

may not provide an accurate solution.

The second class of techniques attempts to avoid the reliance on lattice restrictions

by performing the optimization in continuous space. These methods represent a protein as

a string of beads (amino acids) whose position is defined by their location relative to the

previous three beads. One significant advantage of this formulation of the folding problem

is that it allows the model to take advantage of known scientific knowledge about the

chemical construction of proteins. The use of knowledge such as the Ramachandran plot

(Lehninger 1970) which specifies the possible values for certain angles in a protein, fur-

ther simplifies the problem. This class of problems is also appealing since the problems

may be subjected to a variety of global optimization methods including minimization from

random starting conformations, molecular dynamics, Monte Carlo techniques, and simu-

lated annealing (Abagyan 1993).

This paper will examine several possibilities for the global optimization of a pro-

tein's potential energy function. The approaches rely on two major assumptions:

1. For any specific molecular conformation, a corresponding potential energy

can be computed from a potential energy function model of the protein.

2. The native state corresponds to the global (or near global) minimum of this
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energy function.

Each amino acid is represented as a single point whose position is determined by a bond

length, bond angle, and torsion angle triple. Several different methods for this optimiza-

tion, including both continuous and lattice based approaches, will be examined.
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II. The Potential Energy Function

A. Molecular Representations
Molecular structure information is generally given in terms of bond lengths, bond

angles, and torsion angles. A protein consists of n amino acids in the "primary" sequence,

a1,a2,...an, where ai represents the ith amino acid in the sequence. For every consecutive

pair of amino acids, ai1-I and ai, Ii represents the distance by which they are separated. For

every three consecutive amino acids, ai_2 , ai_1, aj, the bond angle, 0i, represents the posi-

tion of the third amino acid with respect to the line containing the previous two amino

acids. Similarly, for every four consecutive amino acids, ai-3, ai.2, ai. 1, and aj, the torsion

angle, p(i, represents the relative position of the fourth amino acid, ai, with respect to the

plane containing the previous three amino acids (See Figure 2.1).

a3 13 a2

o"04 () 2

a4  a1

Figure 2.1 Conformation for a Four Amino Acid
Sequence

B. Potential Energy Function

Empirical representations of the protein's potential energy include energy terms to

represent chemical bonds, angles, and torsions, as well as non-bonded interactions

between amino acids farther apart in the chemical structure. This simplified definition

resembles a physical model in which beads (amino acids) are connected by springs (first
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term of Equation 2.1) at a distance of Ii. Bond angles, 0i, which are determined by a

sequence of three amino acids (ai_2,aij,ai) are maintained by similar "springs" (the second

term). Torsion angles, qpi, are modeled by a trigonometric based penalty (third term of

Equation 2.1). Such a formulation is often called a molecular mechanics potential. There-

fore, one formulation frequently shown to express the overall potential is shown in Equa-

tion 2.1, where k, and ke are the bond stretching and angle bending force constants

respectively. In the third term of the equation, Vn is the n-fold torsional constant with a

phase shift of 8. This term provides for preferred torsion angles for the protein. For exam-

ple, if n = 3 and the phase shift, 8, is zero, preferred torsion angles (configurations result-

ing in a small penalty) can be found at 60%, 180%, and 300%. (Since the cosine of 180' or

any odd multiple of 180* is -1, the penalty incurred by the preferred torsions will be zero.)

The constants, 10 and 00 represent the preferred bond length and bond angle for each set of

amino acids.

U= k(li-lo) 2 +.k(i-Co) 2(Fi+ Equation 2.1

I I I
k, i, l ) -k,•Oi- ) +)"

+ r r C!JJ

i~((, 1)12 2 1i')6), is known as the
The final portion of the equation, IE, -2(i'

i~ i, I) • ri, i,

Lennard-Jones pairwise potential. This term defines the potential energy contributions of

amino acids separated by more than two residues along the primary chain. Graphically, the

Lennard-Jones term can be represented as a plot (Figure 2.2) of the potential energy of the

protein (in kcal) versus the distance (in A) separating the amino acid residues in the pro-
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tein. In Equation 2.1, il and aij are the Lennard-Jones coefficients, which are constants

2

• 1.5 ----------.-...........----------------------------------

0-

-0.5 -..
2 4 6 8 10

Distance Separating Residues (Ang)

Figure 2.2 Lennard-Jones Pairwise Potential (E---O 181. •-=4.0)

defined by the relationships between the two specific beads (amino acids) involved. The

ril terms in the Lennard-Jones expression represent the Euclidean distance between the

amino acids ai and a, (Ferguson et al. 1994) (Case 1993).
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III. Conversions

A. Coordinate Representations
Potential energy functions for molecular conformations usually involve computing

the distance between molecules. For example, the potential function discussed in Chapter

II (page 12) contains the Lennard-Jones pairwise potential, Ii l 'tl - 2(-i'l6,
i~ [ ,,i, 1J ri, IJ

which uses the distance between all amino acids separated by more than two residues

along the primary chain (such as amino acids a1 and a4). Unfortunately, computing dis-

tances using bond lengths, bond angles, and torsion angles is extremely difficult and very

time consuming. Since optimization requires this computation to be executed often, it is

much more profitable to convert the problem into cartesian coordinates before performing

the optimization. Once this conversion has been completed, the length between the resi-

dues can be found with a minimal amount of computation time. However, the conversion

itself becomes very complex since every set of three residues creates its own reference

frame for bond lengths, bond angles, and torsion angles.

B. The Conversion Geometry
To perform the conversion from a chemical representation (bond lengths, bond

angles, and torsion angles) to a cartesian representation, the first three points in the

sequence can be fixed, without loss of generality, as depicted in Figure 2.1. The first amino

acid, a,, is fixed at the origin, (0,0,0). The second amino acid, a2, is positioned at (12,0,0),

which is a distance from a, equal to the bond length (12) along the x axis. The location of

the third amino acid, a3, is fixed at (12+13cos(0 3),13sin(0 3),0). The position of the fourth

and any other amino acids constituting the primary sequence are found using the cartesian
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a 4

a, (,0,0 18 (/2+/3cos(03),/3sin(03),O

M a 2 (12,O,O)

Figure 3.1 Four Amino Acid Sequence (Cartesian Coordinates)

data associated with the previous three points, and the bond length, bond angle, and tor-

sion angle associated with the amino acid under consideration.

The position of a fourth point, a,, in a four amino acid sequence, ai, aj, ak, a,, is

completely determined by its chemical representation: bond length (I1), bond angle (01),

and torsion angle ((pl). To convert this information into x, y, and z coordinates, the follow-

ing quantities must be computed: (1) a plane based on the bond angle and bond length, (2)

a plane based on the torsion angle and bond length, and (3) a sphere with radius equal to

the bond length. The intersection of the two planes yields a line, which can then be inter-

sected with the sphere to provide two possible positions for the bead a1. The ambiguity

between these two points can be resolved by closer inspection of the definition of the tor-

sion angle. The remaining sections of this chapter serve to illustrate this technique.

C. Plane based on Bond Angle

The bond angle, 0,, and bond length, 11, define a plane in which the fourth amino

acid, a,, must lie (See Figure 3.2). The normal vector to this plane is defined as the vector

between the two previous amino acids (in Figure 3.2, aj and ak). If rk represents the posi-

tion of atom k, and rj represents the position of atomj, then:
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J/

ai ak

Figure 3.2 Plane Found From Bond Angle and Bond Length

rkj = rk - r. Equation 3.1

and this vector, in fact, is the normal vector, no, to the plane, Pe. In addition to a normal

vector, a point on the plane must be specified to complete the construction of the plane.

The bond angle, when combined with the bond length, provides enough information to

compute this point. That is, the distance from the previous point, ak, to the plane is given

by:

d = -llcosO 1 . Equation 3.2

Since this distance is taken in the direction of the normal vector, a point on the plane is

given by:

re = d n.I + rk. Equation 3.3

Therefore, the equation of the plane is:

Aox + Boy + CoZ - Do = 0 Equation 3.4
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where A6 , BO, and C0 are the i, j, and k components of the normal vector, ne. The constant

term, De, is given by:

Do = Aoxo + BoYo + CoZo Equation 3.5

where (xo, Ye, zo) is the point r0 .

D. Plane based on Torsion Angle

The position of the amino acid, a,, can be further restricted by a plane, P(,) con-

structed from the torsion angle and bond length (see Figure 3.4). The normal vector to the

plane, Pq, is found by taking the cross product of rkj and rij (for rkj see Equation 3.1) so

It 8~

Figure 3.3 Plane Derived From Torsion Angle
and Bond Length

that:

r.i = r.-rj Equation 3.6

nq, = rkj xr Equation 3.7
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This plane is will be orthogonal to the first plane, since its normal vector implicitly

involves the cross product of the bond angle plane's normal vector (n. = rkj). A point on

the plane, PT, can be found using the distance from ak to the plane, P(,' and the known nor-

mal vector, n(P. The distance to the plane is obtained by:

d = l1sin ( 1800 - 0,) sin (pt) . Equation 3.8

The point, r(, on this plane is then:

n
r I(I = d [+rk Equation 3.9

As in section C, the equation for the plane is given by:

x+ BWy+Cz - D• = 0 Equation 3.10

where Ag,, B., and Cq0 are the i, j, and k components of the normal vector, n,,. The constant

term, DP, is given by:

D(4 = Axq, +B y• + CYI~zC Equation 3.11

where (xT, yp, zq,) is the point rq,.

E. Bond Length Sphere

Finally, a sphere of radius equal to the bond length about the last point, ak, is

described. The equation is simply:

(x-xk) 2+ (y-yk) 2 (z-zk)= 12 Equation 3.12

where (xk,yk,zk) is the cartesian position of the point ak.
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F. Line at Intersection of Bond Angle and Torsion Angle Planes
Since the bond angle plane and torsion angle plane are orthogonal and therefore

guaranteed to intersect, the line formed by this intersection can be found. The direction of

this line, its line vector, is:

I = no x nf . Equation 3.13

The cartesian components of this line vector are denoted by, (A,, B1, C1). To complete the

line definition, a point on the line must be known. This can be easily accomplished by

finding any solution to the system of two equations defining the two planes, PO and P,,:

[Ae Be Pt 1Fpi = Del Equation 3.14

By setting any single variable to zero (since the system is underdetermined) a point,

rpt = (xpt' Ypt, zp,) , which lies on the line can be obtained. Therefore, using a parametric

formulation (with t representing the parameter), the line is:

x = xpt +Alt Equation 3.15

Y = Ypt +Bit Equation 3.16

Z = Zpt +Cit. Equation 3.17

G. Intersection of Line and Sphere

By combining the information from the line found in the previous section and the

sphere based on bond length, the position of the new residue can be limited to two possi-

ble points (Figure 3.4). Substituting the line equations into the sphere equation developed
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Figure 3.4 Possible Locations for a,

in Equation 3.12, one can derive the following relationships:

(x,+ (zPt+ACt-z) = + B. Equation 3.18

Since t is the only unknown, by the quadratic rule,

t = 2a Equation 3.19

where,

a A4 +B2 + Equation 3.20

b = 2 [Al (xpt - Xk) + B1 (Ypt - Yk) + CI (zpl - zk) I Equation 3.21

2 2 2

C = (xP - xk) + (Ypt - Yk) 2+ (zpt _ zk) . Equation 3.22

The two possible points can be easily found by solving Equation 3.15 through Equation

3.17 using the two values of t derived above.
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H. Resolving to One Point

The ambiguity for the two points can be resolved by simply testing the resultant

torsion angles against the desired torsion angle, (pl. One of the two points is selected and

its torsion angle is computed. If this torsion angle is within a small error of the desired tor-

sion angle, (pl, the point is accepted. Otherwise, the point is discarded and the other point

defined by the intersection is selected. Hence, to complete the computation of the torsion

angle three vectors, rij (Equation 3.6), rkj (Equation 3.1), and r1k, are defined:

rlk = r, - rk. Equation 3.23

Two new vectors are constructed: t, which is normal to the plane defined by ai, aj, and ak,

and u, which is normal to the plane defined by aj, ak, a,:

t = r i x rkj Equation 3.24

u = rlk x rkj. Equation 3.25

The torsion angle, (p, is defined as the angle between the two planes passing through ai, aj,

and ak, and aj, ak, a,, respectively. Therefore:

acos t.* U . Equation 3.26

When t and u are parallel, (p = 0. If t and u are antiparallel, then (p = 180* (Swope and Fer-

guson 1992). This value of (p is compared, as described above, to (pl to eliminate any ambi-

guity and therefore conclude the computation of the cartesian representation of the point a,

(for another method of computing the conversions, see Maranas and Floudas 1994).

I. Effectiveness of Conversion Method

The conversion method developed executes in O(n) steps, since every amino acid
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position must be evaluated. The overhead incurred by such a conversion however, allows

the computation of the distances (and the Lennard-Jones term) between all pairs of amino

acids in O(n2 ) steps, since there are n2 pairs (length computations are 0(1) in cartesian

coordinates). In comparison, computing the distance directly from the protein's chemical

representation would incur an O(n 3) algorithm, since each length computation would

incur an 0(n) penalty. The additional overhead of maintaining a separate copy of the

amino acid in cartesian coordinates is more than compensated for in decreased execution

time.
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IV. n-Chain Hydrocarbons: A Sample Problem

A. n-Chain Hydrocarbon Problem
Techniques aimed at solving the protein folding problem can be tested on simpli-

fied versions of the problem to provide insight into the method's particular characteristics

and potential for a solution. One such simplified version is known as the n-chain hydro-

carbon problem. This problem attempts to find the 3-dimensional conformation of a chain

of n hydrocarbons.

Hydrocarbons can be modeled in a manner similar to proteins: a string of beads (ai,

where i = 1,...,n), positioned by their respective bond lengths, li, bond angles, 6i, and tor-

sion angles, (pi (see Chapter II). Each "residue" in this case, however, can be considered

identical. Scientific knowledge has determined that all hydrocarbons have "preferred"

bond lengths and bond angles. This information can be used in some optimization tech-

niques to reduce the number of problem parameters. Note that similar information has

been developed for proteins using the Ramachandran plot (Lehninger 1970).

B. The Conformation of Heptane
Heptane is an n-chain hydrocarbon of length seven (n = 7). It provides a simple,

tractable problem for which the conformational space can (almost) be exhaustively

explored. While this structure reflects great simplifications over the protein folding prob-

lem, its complexity must not be underestimated.

Using the potential energy function (Chapter II),
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1 2 2
U = X• k(l 1 -lo) 2+ X.ko (8,-8o) 2+X.-[1l + cos (Pip + )] Equation 4.1

xei (C ¶±~12.4 a

where ri, is the distance between residues, or in this case carbons, separated by two or
= 310(kal• 40(kcal'\

more residues along the central chain, kI 310.0( kcal ko 40"01 r-- '
kAng 2J\ rad2 I

Vn = 1.3 (kcal), EiI = 0.181 (kcal), ai,I = 4.0 (Ang), 10 = 1.526(Ang) , and

00 = 109.470. Notice that l0 and 00 represent the preferred bond angles and bond lengths,

respectively, and n is set to three, providing three preferred torsion angles at 60, 180, and

300%, while 8-=0. Since all bonds between hydrocarbons can be considered identical, only

one value of the clj and ajil is required.

Even while great simplifications have been made (modeling the molecule as a

chain of beads, assuming all residues to be identical, and using a small example, such as

heptane), the conformation problem remains very difficult. Since torsion angles have three

preferred positions (600,1800,300°), 3n-3, or 81, local minima are expected. (Recall that

three of the torsion angles are fixed.) Tests on the potential function support this estimate;

by starting from 1000 random starting points, 77 local minima were discovered. However,

merely selecting preferred angles does not guarantee that the initial conformer is also a

local minimum. (Notice in Table 4.1 that the local minimum found by starting at (-60,60,-

Table 4.1 Selected Minima of Heptane

U(M) Initial Position, ý(0) Minimized Position, 0*

-0.339727 180 180 180 180 180.000000 180000000 1800000 180.000000

.0,215M0 -60 60 -60 60 -62.657878 179,600918 -179.457154 179.956 953

-0.215524 -60 180 180 180 .62706316 179.627701 18D.119720 180.000000
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Table 4.1 Selected Minima of Heptane

U(W) Initial Position, 0(0) Minimized Position, *

-0.104118 60 60 -60 60 62.550498 180.191468 -179.798849 62.592457

2.097992 180 -60 60 60 179.378780 -79.278332 79.236470 62.423103

4.384072 180 -60 60 -60 178.741629 -93.723491 69.284953 -94.158124

60,60) results in the same local minimum as the point with initial torsion angles (-

60,180,180,180).) The global minimum for heptane corresponds to the point with all tor-

sion angles equal to 180 (see Table 4.1 and Figure 4.2). (For a complete list of the local

Figure 4.2 Global Minimum Conformation, 0*, for Heptane

minima for heptane found from the preferred torsion angles, see Appendix A.)

While it may seem that 77 local minima is relatively small, larger n-chain hydro-

carbons produce an exponentially increasing number of local minima. A molecule with as

few as 12 beads has 19,683 possible preferred angle configurations, with most of these
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likely to produce a local minimum. It can clearly be seen that finding the global minimum

for any problem approaching the size of the protein folding problem (lengths of 20 or

more), is intractable with exhaustive methods. The next few chapters discuss methods

which attempt to find the global solution without resorting to methods which grow expo-

nentially intractable with problem size.
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V. Convex Global Underestimator

A. A Global Underestimator
One possibility for aiding the search for the global minimum of the molecule's

potential energy function is to use a global underestimator to localize the search in the

region of the global minimum. This new method is designed to fit all known local minima

with a convex function which underestimates all of them, but which differs from them by

the minimum possible amount in the discrete L, norm. The minimum of this underestima-

tor is used to predict the global minimum for the function, allowing a localized conformer

search to be performed based on the predicted minimum. A new set of conformers gener-

ated by the localized search can then serve as a basis for another quadratic underestima-

tion. After several repetitions, the global minimum can be found with reasonable

assurance.

The use of an underestimating function allows the translation of a very complex

function into a simple underestimator. If the underestimator is well-suited to the problem

(provides accurate predictions for the global minimum), immense savings in time can be

accomplished. The presence of quadratic terms in the length and bond angle portions of

the molecular energy function (See Equation 2.1.) indicate the use of a convex quadratic

may provide a suitable approximation for this problem.

B. Theory
This method is presented in terms of a differentiable function F(ý), where 4 c RC

(t represents the number of torsion angles), and where F(0) has many local minima. Since

the bond lengths and bond angle terms in the potential function carry severe quadratic
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penalties, they can be assumed to be fixed for the purposes of the global underestimator.

Therefore, F(0) is a vector of torsion angles of length T, where 'r = n - 3 and n is the num-

ber of residues. (Recall that the first three are fixed by definition.) To begin the iterative

process, a set of k >_ 2"t+l distinct local minima are computed. This can be done with rela-

tive ease by using an efficient unconstrained minimizer, starting with a large set of points

chosen at random in the hypercube H0, which is assumed to enclose the torsion angle

space.

Assuming that k 2! 2,r+1I local minima 00), for j= 1,...,k, have been computed, a con-

vex quadratic underestimator function T(0) is now fitted to these local minima so that it

underestimates all the local minima and normally interpolates F(00)) at 2T+1 points. This

is accomplished by determining the coefficients in the function T'(0) so that:

F = f(J)) - Tp ( J)) 2! 0 Equation 5.1

for j= 1,...,k, and where Xk 1 Sis minimized. That is, the difference between F(0) and

TP(0) is minimized in the discrete LI norm over the set of k local minima 00), j=l ,...,k. The

underestimating function TP(0) is given by:

T(0) = co+ ci,, +djoý Equation 5.2

Note that ci and di appear linearly in the constraints (Equation 5.1) for each local

minimum 00). Convexity of this quadratic function is guaranteed by requiring that d1 2! 0

for i= ..... . Other linear combinations of convex functions could also be used, but this

quadratic function is the simplest.
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C. Minimizing the Underestimating Function
The unknown coefficients ci, i=0,....'t, and di, i=l .... t, can be determined by a lin-

ear program which may be considered to be in the dual form. For reasons of efficiency, the

equivalent primal of this problem is actually solved, as described below. The solution to

this primal linear program provides an optimal dual vector, which immediately gives the

underestimating function coefficients ci and di. Since the convex quadratic function T(O)

gives a global approximation to the local minima of F(O), then its easily computed global

minimum function value 'min is a good candidate for an approximation to the global min-

imum of the correct energy function F(O).

An efficient linear programming formulation and solution satisfying Equation 5.1

and Equation 5.2 will now be summarized. Let fO) = F(0J)), for j= 1,...,k, and let f e Rk be

the vector with elements fO). Also let (00) E Rl be the vector with elements 1/2(00)i)2,

i=l ..... t, and ek c- Rk be the vector of ones. Now define the following two matrices (Pe

R(*T+l)xk and Q E Rx~k:

(D= ek , = Q (1)(j2) ...(0(k. Equation 5.3

Finally, let c E Wl+I, d E R', and 8 E Rk be the vectors with elements ci, di, and 6i, respec-

tively. Then (Equation 5. 1) and (Equation 5.2) can be restated as the linear program (with

variables c, d, and 8):

minimize eT8
c,d,8• k
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subject to 4 T _-T < . Equation 5.4

It is easy to see that c = d = 0 and 8 = f > 0 is always feasible for (Equation 5.4),

and since ekT8 0 0, the linear program always has an optimal solution. Furthermore, since

the matrix in (Equation 5.4) has more rows than columns (2k+T rows and k+2T+l col-

umns, where k 2! T-+J), it is computationally more efficient to consider it as a dual problem,

and to solve the equivalent primal. After some simple transformations, this primal prob-

lem reduces to:

minimize fTyI - fTek

Y1 ' Y2

subject to -I y [. ejk Y Ž 0 Equation 5.5

which has only 2t+1 rows and k+' > 3t+1 columns, and the obvious initial feasible solu-

tion y I = ek and Y2 = 0. Its optimal solution gives the values of c, d, and 8 via the dual vec-

tors, and also determines which values of -(J) are interpolated by the potential function

'I(O). That is, the basic columns in the optimal solution to (Equation 5.5) correspond to

the conformations 00) for which f(i) = P(00)).

Note that once an optimal solution to (Equation 5.5) has been obtained, the addi-

tion of new local minima is very easy. It is done by simply adding new columns to (D and

" and therefore to the constraint matrix in (Equation 5.5). The number of primal rows

remains fixed at 2,t+ 1, independent of the number k of local minima.
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D. Iteration - Approaching the Global Minimum

The convex quadratic underestimating function q'(ý) determined by the values C E

Rt +1 and d E R' now provides a global approximation to the local minima of F(O), and its

easily computed global minimum point Omin is given by (Omin)i -ci/di, i= 1....., with cor-

responding function value Tmin given by Pmin = - c0/(2di). The value I 'min

is a good candidate for an approximation to the global minimum of the correct energy

function F(O), and therefore Omin can be used as an initial starting point around which

additional configurations (i.e. local minima) should be generated. These local minima are

added to the constraint matrix in (Equation 5.5) and the process is repeated. Before each

iteration of this process, it may be advantageous to reduce the volume of the hypercube

HO over which the new configurations are produced so that a tighter fit of T(O) to the local

minima "near" Omin may be produced.

The rate and method by which the hypercube size is decreased and the number of

additional local minima computed at each iteration will be determined by computational

testing. The selection of the hypercube size can be done computationally or with the aid of

an expert. But clearly the method depends most heavily on computing local minima

quickly and on solving the resulting linear program efficiently to determine the approxi-

mating function TP(O) over the current hypercube.

If Ec is a cutoff energy, then one means for decreasing the size of the hypercube

HO at any step is to let HO = { 0: T(O) < Ej. To get the bounds of HO, consider TF(O) < Ec

where T(4) satisfies (Equation 5.2). Then limiting Oi requires that:

,c [ i do4)<_Ec-co. Equation 5.6
i=2
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As before, the minimum value of T(O) is attained when 0i = -ci/di, i=l,...,T.

Assigning this minimum value to each 0j, except Ok, then results in:

Ck4 k + -dk42 - E.-Co + X c /i- ." Equation 5.7
t*k

The lower and upper bounds on O, k=l,.... , are given by the roots of the quadratic

equation

Ck~k+ dktk + " Equation 5.8

Hence, these bounds can be used to define the new hypercube HO in which to gen-

erate new configurations.

E. Local Minimization

The final predicted point can be used as the initial point for a local minimization

procedure. Since the point predicted by the underestimator is expected to be very close to

the global minimum, the conformation found at the nearest local minimum should corre-

spond to the global minimum.

An accurate and efficient local minimization procedure is of great importance to

the establishment of an accurate underestimator as well. The effectiveness of the global

underestimating procedure relies heavily upon the ability to produce very many local min-

ima. Since this minimization is performed a large number of times and each minimum

must reflect an accurate conformer, the development an efficient algorithm is extremely

important.
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VI. Finding Local Minima

A. Twice Differentiable Unconstrained Optimization
Since the potential energy function is smooth (twice-continuously differentiable),

any method which computes an n-dimensional unconstrained minimum can be used. The

methods to be examined satisfy the basic form (where ok is the current estimate of 0%, the

global minimizer conformation):

1. Obtain some initial conformation po and set k +- 0.

2. [Test for convergence.] If the conditions for convergence are satisfied, the

algorithm terminates with Ok as the solution.

3. [Compute a search direction.] Compute a non-zero n-vector Pk, the direction

of search.

4. [Compute a step length.] Compute a positive scalar oak, the step length, which

satisfies the descent condition, F (Ok + akPk) < F (Od •

5. [Update the estimate of the minimum.] Set Ok + I <-- Ok + akPk, k <-- k + I , and

go back to step 2.

To satisfy the descent condition (that for a positive scalar, F (Ok + akPk) < F (Ok))

Pk and eak must have certain properties. One way of guaranteeing that F can be reduced at

the kth iteration is to require that Pk satisfies

T Equation 6.1
9kPk <

where 9k = VF (Ok) is the gradient of the function, F, at point 4 k. When this condition is

satisfied, Pk is known as a descent direction. The next three sections will describe three
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related, but different, methods for computing the local minima of F(0).

B. Steepest Descent
Perhaps the greatest impact on the effectiveness of a local minimization algorithm

is the selection of a "good" search direction, Pk. Even in as few as two dimensions there

are an infinite number of ways to compute the descent direction. The importance of this

decision led to the naming of local minimizers according to the procedure by which it

computes the search direction.

Since a linear approximation to the function F(0) can be presented as a Taylor

series expansion about xk (where gA denotes g ( 0 k) = VF (0k),))

TF (Ok + P) = F (0k) + gkP Equation 6.2

it would appear that a large reduction in F would occur when gp islreadTeaie

THowever, limits must be placed on p. Otherwise, for any p such that gkP < 0, p could sim-

ply be chosen as an arbitrarily large multiple of p. The aim is to chose p, so that among all

T.normalized vectors, gkP is a minimum.Therefore, given some norm, 11o11 Pk is the solution

of the minimization problem:

minimize T 9
PE9 kP

,I1 = I Equation 6.3

If the two-norm is used for the calculation of IpIp, the soiution to Equation 6.3 is just the

negative gradient,

Pk = -g (0k)• Equation 6.4

This solution is known as the direction of steepest descent. Clearly, as long as the gradient

does not equal zero, a descent direction is guaranteed.
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Unfortunately, while a steepest descent algorithm is relatively simple and is guar-

anteed to converge (reach a minimum), it is not very efficient. When faced with a function

of quadratic or greater complexity, the steepest descent algorithm may require several

hundred iterations to make very little progress towards the solution. The function F(O) pre-

sents just such a problem. Hence more efficient methods must be explored (Gill et al.

1981).

C. Newton's Method

The primary weakness of the steepest descent method is its attempt to represent a

complex function using a linear model involving only the gradient. The use of a quadratic

model retains much of the simplicity found in the steepest descent procedure, yet can yield

greater success and efficiency in practice.

This model, based on the first and second derivatives of the function F, is known as

Newton's Method. The function F is approximated using the first three terms of the Tay-

lor-series expansion:

T I T
F (xk + p) = Fk + gkP + •2p GkP Equation 6.5

where Gk denotes the Hessian, V 2F (0) at the point Ok- It is helpful to formulate the algo-

rithm in terms of p (the step to the minimum), rather than the predicted minimum itself. A

minimum of the right hand side of Equation 6.5 will be achieved at the minimum of the

quadratic:

T IlT
D (p) = gkP + 2p Gkp. Equation 6.6

The function (D has a stationary point only if there exists a point where its gradient vector
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vanishes (becomes zero). Therefore, for any minimum, the gradient of 0 must be equal to

zero; that is, VCD (p) = GkP + 9k = 0. A minimization algorithm in which Pk is defined

by:

Pk = -Gk gk Equation 6.7

is termed Newton's method, and the direction, Pk, a Newton direction.

If Gk is positive definite and F(O) is itself quadratic, only one iteration is required

to reach the minimum of the model function from any starting point. Therefore, good con-

vergence from the Newton's method is expected when the quadratic model is accurate. For

a general function (F) Newton's method converges quadratically to 0* if the starting point

(00) is sufficiently close to 0*, the Hessian matrix is positive definite at 0% and the step

lengths (czk) converge to unity.

The local convergence properties of Newton's method make it an exceptionally

attractive algorithm for unconstrained optimization. The availability of the second deriva-

tive also allows the verification that sufficient conditions for optimality exist. (Gill et al.

1981) While Newton's method can be an extremely effective optimization method, it

requires the often very difficult computation of second derivatives.

D. Quasi-Newton Methods
Indeed, F(O) presents a very difficult case since not only are the second derivatives

difficult to compute, so are the first! Ideally, advantage of the curvature information (the

Hessian matrix) could be taken without having to compute it directly. Just such an attempt

is made in quasi-Newton methods. These algorithms are based on the idea of "building

up" curvature information as the iterations of a descent method proceed. Thus, an approx-
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imation to the curvature of a non-linear function can be computed without explicitly form-

ing the Hessian matrix.
-*1

Quasi-Newton methods are very similar to Newton's method, except that Gk is

approximated by a symmetric, positive definite matrix, Hk, which is corrected or updated

from iteration to iteration. The basic structure for the kth iteration is:

1. Set the search direction, sk = -Hkgk.

2. Compute ctk using line search along sk giving ýk + I = Ok + 'kSk.

3. Update Hk giving Hk+I.

The initial matrix, H, can be any positive definite matrix, although in the absence of better

estimates, Hj=I is often made.

The update of the Hessian matrix is generally accomplished through the use of an

updating formula. Many formulas have been established, each of which attempts to gener-

ate a Hessian, Hk+1, from the previous Hessian Hk and preserve positive definiteness.

Through the use of second derivative information gained on the kth iteration, repeated

updating can change the arbitrary matrix, H1, into a close approximation, Hk, to Gk.

One possibility for updating the Hessian was developed by Broyden, Fletcher,

Goldfarb, and Shanno, and is known as the BFGS formula (Fletcher 1987). If the differ-

ences,:

8k = (Xksk = Ok +I I- k Equation 6.8

Yk = gk+ I - 9k Equation 6.9

are defined, then the BFGS formula can be stated as:
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Hk+2 = T H-+-Hy8 T Equation 6.10

Note that the subscript, k, has been suppressed on the right hand side. While many other

formulas have been developed, none have shown any significant improvement over the

BFGS method.

Quasi-Newton methods provide several distinct advantages over a Newton's

method optimization:

1. Only first derivatives are required.

2. Positive definiteness of Hk will guarantee the descent property.

3. Only O(n2) multiplications per iteration are required. (O(n3) are required for

Newton's method.)

E. Finite Difference Computations
Unfortunately, computation of even the first derivative can be a source of great dif-

ficulty, as is the case with the potential function given by due to the mixture of cartesian

and chemical representations. However, the ability to expand smooth functions in Taylor

series allows the values of derivatives to be approximated. This is, if hj is the finite differ-

ence interval (the spacing over which the approximation is to be made) associated with the

j-th component of 0 and ej is the vector with unity in the j-th position and zeros elsewhere,

then:
T 1T

F( hje.) = ()++hjg ej.+-1e2 T.
F ý + = 2 jejG(0+phjej)ej Equation 6.11

T T
where 0 <_ p 1 S 1. Since the terms g ej and e.jG (ý + p Ihje.) ej are the j-th element ofg.

and the j-th diagonal element of G (ý + PIhjej) , respectively, then:
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1

9i= j(F (0 + hjej) - F()) + O (hj). Equation 6.12

Equation 6.12 describes the forward-difference interval expression in the direction ej. The

error developed in approximating gj by the expression to the left of Equation 6.12 is due to

1h2 Tneglecting the term, 2 j ej G (0 + p hfe) e,. This inaccuracy is known as the truncation

error, since it arises from the truncation of the Taylor series. In general, p I is unknown and

therefore it is possible only to compute or estimate an upper bound on the truncation error.

Similarly, a backward-difference expression can be developed by expanding the Taylor

series about the point (¢ - hej) in order to get:

1
g= •(F(4) -F(4-hjej)) +O(hj). Equation 6.13

If the Taylor series expansions of F(O) using both the forward and backward difference

equations are carried one term further, the result is:

F(O4+hie) = F(4) + ej '+ nej + Equation 6.14

and:

F1(0he) = Fhe" 0() Equation 6.15

Subtracting and dividing by hi, one obtains:

gj(0) = -L [F (0 + hjej) - F (0 -jjej)J + O h) Equation 6.16

since the terms containing Gj cancel. The right hand side of this equation is known as a

central-difference approximation to gj(/). This formulation provides a truncation error of
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the second order, involving the third derivative of F in the region [4•-hjej, 4O+hjej]. How-

ever, two function evaluations (in addition to F(0)) are required to approximate g,{p), as

compared to one evaluation for Equation 6.12 and Equation 6.13 (the forward and back-

ward-difference approximations).

Through the use of the central difference approximation (Equation 6.16), the gra-

dient of the function can be calculated without explicit knowledge of the derivative. The

error produced in the finite difference approximation should be small as long as hj is cho-

sen to be suitably small (Gill et al. 1981).

F. Step Length (Line Search Calculations)
Once the search direction, s, has been established, the distance to travel along this

path, a, must be found. Any line search method will suffice for this calculation. Since the

potential function is of unknown complexity, a simple algorithm is chosen:

1. Letf 0 = F ().

2. Set ao to a very small initial value (a - e > 0) and i +- 0.

3. Compute a new function value, fi +1 = F (0 + ais).

4. If fi + I <fi, set•ai + -= 2a•, i +- i + , and return to step 3.

5. Otherwise, set a = ai and stop.
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VII. Underestimating Function- Trials and Results

A. Global Minimum Conformation for Heptane

A solution for the 7 bead hydrocarbon heptane was obtained in 68 seconds of CPU

time on a SUN Sparcstation 2. While the improvements in computation time are small for

this problem (Enumeration required only 79 seconds to test all local minima.), many of the

characteristics of the method can be observed. Table 7.1 summarizes the minimization of

the potential function for heptane. (See Appendix C for a complete listing of the program

output.) Notice that the first iteration reports the current "best" (corresponding to the low-

est potential energy value) conformation to be approximately the set of torsion angles,

(180",180",300",180*). Recall that the bond lengths and bond angles are considered fixed

Table 7.1 Run Summary for Heptane

_1 2 18 8.2 .: 20 8.1 • : 4 8.2 _.

q2 30 180 17.5 :!79 -5199 7.9 |

. . .........

S,, ,, . ..

0 5 ~ 0

o 0 0 a0

_ U 00 ~ ~ '~ "a

42 330 180 179.53 187.96 15 179.99 NC 4 179.99 179.88

23 278 180 297.'50 163.06 140 180.06 180.14 5 180.12 NC

94 -60 180 179.63 195.98 20 179.97 179.88 5 179.91 NC

FQ -.2967 .3398 -.3398
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for the purposes of the global underestimator. However, the global underestimator predicts

a conformation close to (180%, 180%, 180%, 1800). After the second iteration, concentrated

around the predicted point, the new results report that a better function value can be real-

ized at this conformation. The underestimator and the current global minimum now reside

at almost identical points. The third iteration confirms (1800, 180%, 180%, 180") as the glo-

bal minimum. This result has been shown through enumeration to be the correct global

minimum conformation for the potential energy function.

B. Prediction for Hydrocarbons of Arbitrary Length
As problem size increases, the number of local minima increases exponentially

(0( 3 ")), as can be seen in Figure 7.2. With exponential increases in the number of local

800000

"c 600000-------------------------------------------------- -----

0EJ 400000 -----------------------------

0

"E 200000.............. ......

4 5 6 7 8 910111213141516
Number of Residues

Figure 7.2 Number of Residues vs. Number of Local Minima

minima, exhaustive searches for the global minimum quickly become computationally

intractable. By comparison, the underestimator method produces a final prediction in

O(n 4) time.

The main contributors to the underestimator's O(n4) rate are the function evalua-
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tions and conversions. Every function evaluation incurs an 0(n 2 ) penalty due to the con-

versions and distance calculations required by the Lennard-Jones term. The non-linear

program which computes the local minima averages O(n) iterations to reach a local mini-

mum (Figure 7.3). The O(n) iterations performed in the local minimization procedure,

120

0•

.E 1 0 0 ----------------------------------------------------- ---.....

0

0 0 -- - - - - - - - -- - - - - - - - - -I ----- ---- ---- ----

0 5 10 15 20 25
Number of Residues

Figure 7.3 Number of Iterations Required for Local
Minimization

combined with the O(n2 ) time for function evaluation, indicate that the total time required

per local minimization increases at a rate no greater than O(n3) (See Figure 7.4.). In fact,

the time required to perform a single local minimization as a function of the number of

beads, n, can be approximated (using a least squares method) by the function

f(n) = 0.003n 3 - 0.68n2 + 5.46n - 14.28 (as seen by the curve in Figure 7.4).

The amount of time for exhaustive techniques is driven by the number of local

minimizations required to test each case (531,441 minimizations in the 15 bead problem),

and hence, to test every possible local minimum conformation for an n-chain hydrocarbon

of length 15 would take over 185 days on a Sun workstation! In contrast to enumeration,

the underestimator requires a much less drastic increase in the number of local minima

calculations. Since the number of iterations of the underestimator needed to find a global
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minimum remains close to constant (0(1)), and each step requires O(n) local minima to

form the underestimator, a linear increase in the number of minimizations is expected.

This effect can be seen in Figure 7.5.
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Figure 7.5 Number of Local Minima for Complete Global
Minimum Prediction

The effect of increases in problem size on total time for global minimum predic-

tion can be seen in Figure 7.6. Note that this graph depicts CPU time and does not include

the time required to enter values between iterations. The curve seen in Figure 7.6 repre-
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Figure 7.6 Total CPU Time for Global Minimum Prediction

sents the least squares fit, 0.01 n4 - 0.29n3 + 3.85n 2 -22.26n + 44.13. Thus the final predic-

tion can be provided in no worse than O(n 4) time. While the prediction times for the

underestimator are clearly significantly better than those of an exhaustive search, the

O(n4 ) rate of increase in time as problem size grows makes it unlikely that molecules sub-

stantially larger than 22 beads will be solved. In fact, the underestimating method enabled

predictions to be made for hydrocarbons of length 4 through 15 and 22. (See Appendices

B, C, D, and E for selected underestimator runs.)

The 22 bead problem took over 16 hours for the final prediction (Figure 7.7). This

prediction was made with 4 iterations of the global underestimator (See Appendix E for

complete output from the 22 bead run.), and 143 seconds were required for each local

minimization. Further increases in problem size will face even larger increases in execu-

tion time.

C. Applicability to the Protein Folding Problem
While the molecular conformation problem is a greatly simplified version of the
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Figure 7.7 Global Energy Minimum for a 22
bead hydrocarbon

protein folding problem, the basic "unified atom" model used is still applicable to both.

The only substantial change is that the potential energy function should be appropriate to

the protein structure. The new potential energy function would be required to model inter-

actions between all combinations of the 20 amino acids, as well as take into account any

additional potential energy contributions caused by amino acid interactions. Notice, how-

ever, that this model completely ignores any intra-peptide interactions; that is, the model

used does not consider any secondary structures such as alpha helixes and beta strands. A

much more complicated model would be required to capture these interactions. Neverthe-

less, the formulation of the convex quadratic global underestimator and the local minimi-

zation procedures based on the model, presented in Chapter II, will remain applicable to

the problem.
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VIII. Quadratic Assignment Formulation

A. Lattice Restrictions
Attempts to solve the protein folding problem in continuous space confront the

daunting task of finding the optimal solution from among an infinite number of conforma-

tions. Lattice methods attempt to avoid this by restricting each amino acid to a vertex, or

site, on a fixed lattice. By limiting the positions of the residues, the potential energy mini-

mization can be formulated in a manner which facilitates the optimization. This section

describes a method which involves a quadratic assignment formulation for the protein

folding problem using the lattice model. The quadratic assignment problem can then be

transformed into a continuous concave quadratic global minimization problem. The global

solution to this concave minimization problem can then be used as a starting point for a

"relaxed" continuous minimization problem. The result this minimization should provide

a global, or near global, minimum of the potential energy function, and hence a prediction

of the native, or folded state, of the molecule (Phillips and Rosen 1994).

B. Quadratic Assignment Formulation

To formulate a discrete approximation to the molecular conformation problem, the

original continuous problem in 3-dimensional space is approximated by a suitable 3-

dimensional lattice with N sites, N > n (where n is the number of amino acids). If sj repre-

sents lattice site j, for j= 1 ,...,N, then a total of nN zero-one variables xij are sufficient to

completely determine the assignment of the beads ai to the lattice sites sj. Two constraints

are established:

1. Each bead must occupy exactly one lattice site.
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N

XIxi,= 1, in= 1...,n
J = I Equation 8.1

2. At most one bead occupies each lattice site, sj.

n

xij0 <1, i = 1, ... ,N
j 1 Equation 8.2

The objective function can be written in two portions, a linear and quadratic term. The lin-

ear term:

n N

Sdxi Equation 8.3
= IJ = I

represents the direct contribution, dij, to the potential energy when the bead ai is assigned

to lattice site s1. Direct contributions consist of the interaction of the residue, ai, and the

environment (hydrophobic beads might prefer to be in the interior of the folded chain and

hence in the center of the lattice structure). The quadratic term:

n N n N
I IX I I -I PijkXiJXk, Equation 8.4

i= lj= Ik= 11=1

represents the pairwise contribution Pyk, to the total potential energy when the bead ai is

assigned to lattice site sj and bead ak is assigned to lattice site s1. One possibility for this

penalty is, as in the continuous case, the Lennard-Jones pairwise potential. Using Len-

nard-Jones, the term PojkI depends only on ai, ak, and Ilsj - sill. Therefore, it is convenient to

write the total potential energy function in the form:

E (x) = c x + Ix Qx Equation 8.5
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RnN

where x E RnN denotes the zero-one vector with elements xij, c E R denotes the vector

with elements di,, and Q E R (nN) x (nN) is a real symmetric (typically indefinite) matrix

with elements P~ikl. Thus, the 3-dimensional minimum energy conformation of the lattice

restricted model is given by the solution to the quadratic assignment problem:

min E (x)
X e P Equation 8.6

where P consists of the constraints (Equation 8.1) and (Equation 8.2), and the integer

restrictions, xe i {Q I} for i= 1,...,n and j= 1,...,N.

The usefulness of this approach is very heavily dependent on the selection of the

lattice structure. Obviously, determining the perfect lattice is as difficult as the protein

folding problem itself. Great care must be taken to insure the lattice is fine enough to

closely approximate possible solutions in continuous space, and coarse enough so that the

problem does not become computationally intractable. The lattice structure can take many

forms: spherical, rectangular, random, or specially developed (Hinds and Levitt 1992).

That the lattice might not allow for the global minimum, or any stable conformation at all,

is not important. The continuous minimization stage will relax the "non-stable" conformer

found in the lattice restricted phase to a true energy minimum.

C. Concave Quadratic Global Minimization Formulation
The discrete quadrauc assignment problem (Equation 8.6) can be shown to be

equivalent to the continuous minimization of a strictly concave quadratic function over a

polytope. f Xmax is the maximum eigenvalue of the matrix Q = R(uN) (nN), and

2I= i+ max' then since xij = xij (recall that xjj {QI1 ), the energy function can be

rewritten as:
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T i

E' (x) = C x + I xTQ'x Equation 8.7

where c' = c + ( )e and Q' = Q - jl is a symmetric negative definite matrix. (See

Appendix F for a proof that Q' is negative definite.) Note that E (x) = E' (x) for all

x..e {Q1}.

The global minimum of a strictly concave quadratic function is attained at an

extreme point of the feasible polytope. By relaxing the integer restrictions in the polytope

P above to get the new polytope P' consisting of the constraints (Equation 8.1) and (Equa-

tion 8.2), and the bounds O<_x i,_ 1 for i=1,...,n and j=l,...,N, it can be seen that the

extreme points of P' correspond to the feasible points of P. Hence, a global minimum for

the strictly concave quadratic problem:

min E' (x)
Xr= P, Equation 8.8

will also be a global minimum of the discrete quadratic assignment problem (Equation

8.6).

Thus, the original quadratic assignment problem is equivalent to the minimization

of a concave quadratic function on the unit hypercube with nN variables, each of which is

restricted to the interval [0,1]. Two different computational methods for this class of prob-

lem have recently oeen developed. Either of these methods, linear underestimating func-

tions or a stochastic method solving multiple cost row linear programs, can be used to

provide the minimum of the concave, quadratic function. The global or near global solu-

tion to this problem provides a convenient starting point for the relaxed, local minimiza-

tion problem.
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The solution of the quadratic assignment problem provides the conformation with

the lowest potential energy over all possible conformations on the lattice. Since this con-

formation may not lie at the exact position of the true global minimum, a local minimiza-

tion procedure can be used to find the true solution. This minimization is therefore an

unconstrained local minimization with 3(n-1) variables (Recall that 01=q1l=(p2=0 are

fixed.) over a continuous potential energy function (See Chapter II.). Any of the local min-

imization methods described in Chapter VI, including the quasi-Newton method, will sat-

isfy the requirements of this problem.

D. Potential for Lattice Based Solutions
Unfortunately, any minimization based on the quadratic assignment method is

totally reliant on the selection of an appropriate lattice. The establishment of a lattice

which can accurately model the system quickly forces the problem to become intractable

as problem size increases. Even for a very small problem, the r astruction of a lattice

which can accurately represent the molecule in three-dimensional space ipcurs a very

large number of variables (See Table 8.1.). Computing a solution based on such a large

Table 8.1 Number of Variables Required for Quadratic Assignment Formulation

Lattice Size

Number of 5x5x5 6x6x6 7x7x7 1OxlOxlO
Beads

5 625 1080 1715 5000

6 750 1296 2058 6000

7 875 1512 2401 7000

12 1500 2592 4116 12000
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number of variables is currently intractable. Even the simplest problem described in Table

8.1 (5 beads on a 5x5x5 lattice), required 131 minutes to produce a minimum energy con-

figuration on the lattice. Once this solution is given, the local minimization phase must

still be run, and the final configuration remains heavily dependent on the selection of the

lattice. As problem size increases, the number of variables required to form a suitable lat-

tice increases at a rate which can be described by O(n4). The 625 variable problem

incurred by the 5 bead hydrocarbon already approaches the limits of current optimization

methods. Without prior knowledge of the protein structure (upon which an appropriate lat-

tice could be based), the quadratic assignment formulation will not (Phillips and Rosen

1994) provide satisfactory results.
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IX. Simulated Annealing

A. Optimization Analogous to Physical Annealing
Optimization by simulated annealing is one of the newest and most promising

methods of finding the minimum or maximum of a function with multiple local optima.

Simulated annealing is analogous to the physical process of annealing in condensed matter

physics. In physical annealing, a solid is heated until it melts. It is then carefully cooled

until it crystallizes into a state with a perfect lattice. During this process the free energy of

the solid is minimized. Likewise, simulated annealing attempts to optimize a function by

reducing the "temperature" of the solution's potential function until a global minimum

energy is reached (Laarhoven and Aarts 1989).

B. Simulated Annealing Theory

The name "simulated annealing" originated from the analogy with the physical

annealing process of solids. Annealing consists of two steps (Aarts and Korst 1989):

"• Increase the temperature to a maximum value at which time the solid
melts.

"* Decrease carefully the temperature until the particles arrange themselves
into the ground state of the solid.

The solid shifts from a state in which all particles arrange themselves randomly, to a

ground state in which the particles are arranged in a highly structured lattice. In this lattice

state, the energy of the system is minimal. Thus, the ground state is obtained only if the

maximum temperature is sufficiently high, and the cooling is done sufficiently slow.

A computational equivalent of simulated annealing can be based on the following

ideas:

Solutions in a combinatorial optimization problem are equivalent to
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states in a physical system.

* The cost of a solution is equivalent to the energy of a state.

The role of temperature is represented by a control parameter, c. If i and j represent two

solutions to a combinatorial optimization problem, with corresponding costs f(i), and f(j),

then the probability that solution j is accepted after visiting solution i is:

1 if f(j) <f(i)

e f if f(j) >f(i) .

For every solution generated, this acceptance criterion is applied, giving simulated anneal-

ing the unique feature of being able to accept limited deteriorations in potential value. The

simulated annealing algorithm can be stated as:

1. Given some initial configuration, 00, with corresponding control parameter,

c0 , and number of transitions, Lk and set k +- 0 and f(0) = F (00) .

2. Set t+- 1.

3. Generate a new point Ok, with potential, 4(0k).

4. If f( 0 k) <f(0) then 0 = k"

5. Otherwise, if e is greater than a random number on the interval

[0,1) then 0 = Ok-

6. Set t +- t + I and if u is less than Lk go back to step 2.

7. Calculate new number of transitions, Lk.

8. Calculate new control parameter, Ck.

9. Return to step 2.

In this algorithm, Ck is the value of the control parameter, and Lk the number of transitions
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generated at the kth iteration of the algorithm (Aarts and Korst 1989). The generation of

the next set of parameters, represented by step three above is done by applying a perturba-

tion mechanism. This mechanism transforms the current state into the next state by a small

distortion. In the analogy with the physical process of annealing, this change may be the

displacement of a particle. In combinatorial optimization, this change represents slight

parameter alterations.

Simulated annealing is essentially a generalization of a local search. When the

control parameter is set to zero, simulated annealing is identical to a local search algo-

rithm, since the value of the potential function is only allowed to decrease. However, the

ability to move through ranges of higher potential function values enables simulated

annealing to find high quality solutions which do not strongly depend on the initial solu-

tion. Thus, simulated annealing has the capability to:

"* process potential functions possessing arbitrary degrees of nonlinearities,
discontinuities, and stochasticity.

"* process arbitrary boundary conditions and constraints imposed on these
potential functions.

"* be implemented with a minimal degree of coding relative to other nonlin-
ear optimization algorithms.

"* statistically guarantee the finding of an optimal solution (ergodicity).
(Ingber 1993)

C. Simulated Annealing and the Protein Folding Problem
Implementations of simulated annealing on the protein folding problem did not

meet expected results. An implementation of the simulated annealing algorithm on the

trivially simple 4 bead hydrocarbon, butane (containing three local minima) failed to

return the global minimum after several thousand function evaluations. Simulated anneal-

ing requires the accurate selection of temperature schedules, control parameters, and stop-
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ping criteria. With no knowledge of the potential function structure or complexity,

selection of these values becomes extremely difficult. To further complicate the situation,

the user must provide the perturbation mechanism used to generate new points. Even

extremely simple problems, such as a concave quadratic, become very slow if simulated

annealing is not set up correctly. For instance, even if the global minimum was selected on

the first attempt, the simulated annealing algorithm will still spend significant amounts of

time "bouncing" around the minimum point, occasionally allowing increases in function

value, only to insure that the true global minimum has been found. With correct parameter

choices, the simulated annealing algorithm may be able to make this decision quickly, but

without prior knowledge of the function, simulated annealing's sensitivity to parameter

changes makes its use prohibitive.
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X. Conclusions

Three computational methods for solving the protein folding problem were exam-

ined. Two of these methods failed to produce acceptable results. A lattice based method,

which allows the formulation of a quadratic assignment problem, failed due to the

immense number of variables required to accurately model a protein chain of more than

trivial length (more than five amino acids). Solving such a problem, containing a very

large number of variables, is currently computationally intractable.

Simulated annealing has the theoretical ability to generate solutions to the prob-

lem, but is completely dependent on the selection of parameters which affect its operation.

Without knowledge of the characteristics of the potential energy function, the selection of

these values is very difficult.

The only successful method tested was the convex quadratic global underestima-

tor. Using this technique, predictions for n-chain hydrocarbons of length 5 through 15 and

22 were made. However, large increases in local minimization times make predictions for

chains of length greater than 22 unlikely using the current technique. The molecules tested

produced a least squares fit of 0.23n3 - 4.88n2 + 36.03n - 85.8836 for total prediction time

(minutes). Using this approximating function, computation of an protein sized molecule

(100 residues), would take 133 days of CPU time. For the underestimator to realize its

potential, a superior method of finding local minima must be developed. The local mini-

mization procedures rely on many function evaluations. Improvements in the function

evaluation time (including conversions) would be of immense benefit, and perhaps pro-

vide the key to reducing local minimization times. Recent work by Greengard (1988) has

attempted to specifically address this problem.
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XII. Appendices

A. Conformers for Heptane

Table 12.1 Local Minima from Preferred Angles, Heptane

U(M) Initial Position, .(O) Minimized Position, *

-030MZ 180 180 180 180 190.0~ t#0ooi owtE 80WI•)M00O0

-0296809 180 -60 180 180 179,492157 -62,4)0 179,609519 180.1 16M

-0296M0 180 180 -60 180 180.1370 17.5l99210 6-940 I616

42.96761 180 180 60 180 1 1R47W - 3 I 74M3 62.73f)180 IS 73030

4296694 180 60 180 180 190,3M366 614582V 1 W-392369 179S82M6

-023.5$24 180 60 60 180 180,794776~ 63.87085M 63876044 1,80.7%720

-0.235466 180 -60 -60 180 1791941498 -63.8~96 -63.87)09 179.194518

-0.215609 -60 60 -60 60 -6165S7978 $7M6Q0I -17'9.957154 179956953

4~2 15524 -60 180 180 180 -62,706316 179.627701 180.119720 180.000000

-0215W0 180 60 -60 60 IW0784:3I~ . 119.841422 -I179.60557 62.704924

-0.215492 60 180 180 180 62.689M3 180.367282 179.891415 180.000000

-0215452 180 180 180 -60 180.00000D 180.121010 1'79.63M35S -61689425

-0.215452 180 180 180 60 .180.000000 [19.$S0405 190,407944 62.646775

-0195729 180 -60 180 -60 179.7119991 -62.709134 179.5"W63 -62.896149

-0.19568 -60 180 -60 180 -,6218"246 17613080 -62.715267 179.718M9

0.019%39 60 180 60 180 162.919639 181.405M2 62.707925 180.299240

4195561. 60 -60 60 -60 62,909155 -17&.598M06 a2670638 -179.71%697

04195526 180 60 180 60 180-UI668 6241W 6 191.385888 62.895050

04139429 60 180 180 -60 62M5099 180750770 1791~4S -67.499945

-0.139423 -60 180 180 60 -U.475940 179M29740 180,740M0 62,475M9

-0.125230 60 60 180 180 64.173448 63.997801 180.864636 179.735M69
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Table 12.1 Local Minima from Preferred Angles, Heptane

U(W) Initial Position, 0(0) Minimized Position, 0*

-0.125181 -60 60 -60 -60 -179.762381 179.114165 -63.985617 -64.185171

-0.125144 180 180 60 60 179.760412 180.856949 63.972239 64.164748

-0.125125 -60 -60 180 180 -64.177304 .64.007009 179.159146 180.248780

-0.125125 -60 -60 60 -60 -64.210703 -64.018941 179,154209 -179.752857

-0.125101 180 180 -60 -60 180.222763 179.150008 -64.035518 -64.156472

-0.124850 -60 180 60 180 -62.737240 180.041359 62-538518 180.313344

-0.124826 60 180 -60 180 62.766715 179.950797 -62.544082 179.694691

-0,124723 180 -60 180 60 179,676542 -62.513659 179.959773 62.721797

-0.124681 180 60 180 -60 180.321851 62.542211 180.033777 -62.749200

-0.115072 -60 -60 180 -60 -63.801675 -64.208098 177.402217 -62.874698

-0.115043 60 180 60 60 62.902069 182.598851 64.182034 63.817398

-0.115031 60 60 180 60 63.819117 64.207828 182.636566 62.861170

-0.114919 -60 180 -60 -60 -62.897443 177.358042 -64.224387 -63.846126

-0.104232 60 180 180 60 62.576398 180.185008 180.185012 62.575741

-0.104125 -60 180 180 -60 -62.534582 179,808088 179.807766 -62.603440

-0.104118 60 60 -60 60 62.550498 180.191468 -179.798849 62.592457

0.009673 180 60 60 60 180.725871 63.726114 64.947038 64.047553

0.009674 60 60 60 180 64.016389 64.958687 63.664674 180.702491

0.009691 180 -60 -60 -60 179.273906 -63.686327 -64.964465 -64.041972

0,009736 -60 -60 -60 180 .64.055443 -64.987973 -63.684967 179.269252

0.045243 60 180 -60 -60 62.685626 179.523486 -64.182031 -64.199601

0.045296 -60 -60 180 60 -64.176786 -64.166840 179.514057 62.669550

0.045313 -60 180 60 60 -62.666795 180.526585 64.165301 64.223136

0.045388 60 60 180 -60 64.209791 64.193968 180.526278 -62.685254

0.249514 60 60 60 60 64.088236 64.918552 64.907186 64.083887

0.249592 -60 -60 -60 -60 -64.088099 -64.893060 -64.880987 -64.070387
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Table 12.1 Local Minima from Preferred Angles, Heptane

U(W) Initial Position, 0(0) Minimized Position, 0*

2.026672 60 60 -60 -60 63.000643 79.493002 -79.562918 -62.995198

2.026839 -60 -60 60 60 -62.996259 .79.546417 79.567594 62.981162

2.058274 -60 60 60 180 -80.86256 78.462644 62.066901 181.075020

2.058303 60 -60 -60 180 80.184791 -7&395394 -62.095009 178.921228

2.058343 180 60 60 -60 181.106215 62.088491 78.404974 -80.180360

2.058378 180 -60 -60 60 178.917917 -62.052305 -78.445940 80.186494

2.070151 180 -60 60 180 179.287701 -79.399090 79.614853 180.690834

2.070219 180 60 -60 180 180.714220 79.494318 -79.365457 179.293132

2.097911 180 60 -60 -60 180.595288 79.299839 -79.307316 -62.430627

2,097949 -60 -60 60 180 -62.396732 -79.336814 79.286330 180.623456

2.097992 180 -60 60 60 179,378780 -79.278332 79.236470 62.423103

2.098034 60 60 -60 180 62.411331 79.279927 -79.366127 179.373374

2.158417 180 180 -60 60 180.225655 179.209800 -79.355190 79.491831

2.158423 -60 60 180 180 -79.398437 79.611536 180.835907 179.812488

2.158439 180 180 60 -60 179.816175 180,791002 79.434474 -79.543133

2.158467 60 -60 180 180 79.514152 -79.455677 179.243947 180.205755

2.230068 60 180 60 -60 62.935288 182.279514 82.013853 -77.339439

2.230082 -60 60 180 60 -77.265866 82.102048 182.245218 621944156

2.230124 60 -60 180 -60 77,368066 -81.914342 177.749227 -62.976229

2.230226 -60 180 -60 60 -62.947196 177,778962 -81,899852 77.352625

2.336922 60 60 60 -60 64.085833 63.375309 78.562093 -79.969246

2.337016 -60 60 60 60 -79.963708 78.570336 63.378969 64,079620

2.337018 60 -60 -60 -60 79.875053 -78.515297 -63.341112 -64.066549

2.337127 -60 -60 -60 60 -64.098840 -63.359511 -78.518880 79.935753

2.343269 -60 60 180 -60 -79.299852 79.719299 180.326332 -62.698935

2.343326 60 180 -60 60 62.700984 179.692084 -79.670324 79.291646
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Table 12.1 Local Minima from Preferred Angles, Heptane

U(M) Initial Position, 0(0) Minimized Position, 0*

2.343330 60 -60 180 60 79.431571 -79.717732 179.674046 62.754099

2.343345 -60 180 60 -60 -62.719402 180.352229 79.647337 -79.369962

4.151268 60 -60 -60 60 78.132822 -76.957224 -76.943581 78.178186

4.151353 -60 60 60 -60 -78.142142 76.959901 76.950608 -78.166430

4.384072 180 -60 60 -60 178.741629 -93.723491 69.284953 -94.158124

4.384075 -60 60 -60 180 -94.198578 69.340226 -93.775408 178.766022

4.384250 60 -60 60 180 94.299939 -69.383118 93.736766 181.247700

4,502235 60 -60 60 60 95.723592 -70.556034 90.568777 61.256347

B. Global Underestimator Run: Butane (4 beads)

Host Machine: haney Tue Apr 12 10:46:53 EDT 1994

How many randomizations (at least 3): 10

Within what radius of phi[ 1] = 180.0000 (degs): 180

--> Using 10 randomizations

running QN-BFGS (using all local minima) ... pass #1

Elapsed Real Time for QN-BFGS = 1.000 Seconds

--> II points reduced to II unique conformers

solving LP ...

Conformations: 11 (possibly non-unique)
Dihedral Angles: I
Quad Fit Error = 0.014714 kcal/mol (sum of errors)
LP Pivots = 4

Interpolated Conformations:

123 (3 out ofll)
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Convex Quadratic Underestimator:

c[0] = +0.553564
c[l] = -0.357722 dIl] = +0.I 13864

Max error in Quad Fit = 0.006454 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
8 0 0 1 0 0 0 0 1 1

Ranges on the Dihedrals (Degrees):

63.011900 <= phi[lI <= 297.081800

Elapsed Real Time for LP = 0.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[l1 = 3.141660 rads (180.003872 degs) phi[l1 = 3.141593 rads (180.000000 degs)

Energy = -0.008356 kcal/mol

LP Prediction/Global Minimum Difference (inftnorm) = 0.000068 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000000 kcal/mol

Repeat (y/n)? y

How many randomizations: 5
What fraction of the distance to the global min should be used [0,1]: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[1] -1 180.0039 (degs): 5

--> Using 5 randomizations

running QN-BFGS (using only global minimum) ... pass #2

Elapsed Real Time for QN-BFGS = 1.000 Seconds

--> 7 points reduced to 5 unique conformers

solving LP ...

Conformations: 5 (possibly non-unique)
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Dihedral Angles: I
Quad Fit Error = 0.000681 kcal/mol (sum of errors)
LP Pivots = 6

Interpolated Conformations:

3 4 (2 out of 5)

Convex Quadratic Underestimator:

c[0] = +0.221661
c[ I I = -0.073250 d[ I ] = +0.000000

Max error in Quad Fit = 0.000348 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
2 0 0 1 0 0 1 0 0 1

Ranges on the Dihedrals (Degrees):

179.196100 <= phi[lI <= 180.156200

Elapsed Real Time for LP = 0.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[1] = 3.141593 rads* (180.000000 degs) phi[1] = 3.141593 rads (180.000000 degs)

Energy = -0.008356 kcalimol

LP Prediction/Global Minimum Difference (in fnorm) = 0.000000 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000000 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 0.003900 degs

Successive global conformers change (inf-norm) = 0.000000 degs

Eneigy improvement = 0.000000 kcal/mol

Repeat (y/n)? n
Run Complete....

C. Global Underestimator Run: Heptane (7 beads)

Host Machine: haney Tue Apr 12 11:18:57 EDT 1994



67

How many randomizations (at least 9): 25

Within what radius of phi[ I] = 20.0000 (degs): 180
Within what radius of phi[2] = 330.0000 (degs): 180
Within what radius of phi[31 = 278.0000 (degs): 180
Within what radius of phi[4] = -60.0000 (degs): 180

--> Using 25 randomizations

running QN-BFGS (using all local minima) ... pass #1

Elapsed Real Time for QN-BFGS = 40.000 Seconds

--> 26 points reduced to 26 unique conformers

solving LP ...

Conformations: 26 (possibly non-unique)
Dihedral Angles: 4
Quad Fit Error = 24.465463 kcal/mol (sum of errors)
LP Pivots = 13

Interpolated Conformations:

189101213172126 (9 out of 26)

Convex Quadratic Underestimatoi:

c[0] = +1.313334
c[ I] = -0.299179 d[ I) = +0.087703
c[2] = -0.273989 d[2] = +0.083520
c[3] = -0.225441 d[3] = +0.079214
c[4] = -0.344606 d[4] = +0.100744

Max error in Quad Fit = 4.677598 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
17 0 0 0 7 0 0 0 0 2

Ranges on the Dihedrals (Degrees):

62.664800 <= phi[ 1] <= 297.534500
62.362800 <= phi[2] <= 297.492700
62.576500 <= phi[3i <= 297.954800
62.516700 <= phi[4] <= 297.321200
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Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[lI = 3.411274 rads (195.451627 degs) phi[1] = 3.143848 rads (180.129200 degs)
phi[2] = 3.280520 rads (187.959930 degs) phi[2] = 3.133486 rads (179.535500 degs)
phi[3] = 2.845974 rads (163.062310 degs) phi[3] = 5.192398 rads (297.502500 degs)
phi[4] = 3.420611 rads (195.986554 degs) phi[41 = 3.135182 rads (179.632700 degs)

Energy = -0.296754 kcal/mol

LP Prediction/Global Minimum Difference (inLnorm) = 2.346424 degs
LP Prediction/Global Minimum Quad Function Difference = 0.226207 kcallmol

Repeat (y/n)? y

How many randomizations: 20
What fraction of the distance to the global min should be used [0,11: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[ I ] = 195.4516 (degs): 20
Within what radius of phi[21 = 187.9599 (degs): 15
Within what radius of phi[3] = 163.0623 (degs): 140
Within what radius of phi[4] = 195.9866 (degs): 20

--> Using 20 randomizations

running QN-BFGS (using only global minimum) ... pass #2

Elapsed Real Time for QN-BFGS = 15.000 Seconds

--> 22 points reduced to 22 unique conformers

solving LP ...

Conformations: 22 (possibly non-unique)
Dihedral Angles: 4
Quad Fit Error = 0.011400 kcal/mol (sum of errors)
LP Pivots = 20

Interpolated Conformations:

127811 2021 (7 out of 22)

Convex Quadratic Underestimator:

c[0] = +46.835326
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c[ I) = -0.056420 d[1J = +0.000000
c[2] = -0.051352 d[2] = +0.000000
c[3] = -0.063887 d[3] = +0.020319
c[4] = -29.772245 d[41 = +9.482895

Max error in Quad Fit = 0.002471 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10 3 2 2 3 1 0 0 0 1

Ranges on the Dihedrals (Degrees):

179.383400 <= phi[l] <= 180.446000
179.018300 <= phi[2] <= 180.749100
62.158100 <= phi[3] <= 297.544400
179.528500 <= phil4] <= 181.045700

Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[I] = 3.141902 rads* (180.017700 degs) phi[l] = 3.141902 rads (180.017700 degs)
phi[2] = 3.141477 rads* (179.993400 degs) phi[2] = 3.141477 rads (179.993400 degs)
phi[3] = 3.144200 rads (180.149391 degs) phi[3] = 3.142771 rads (180.067500 degs)
phi[4] = 3.139573 rads (179.884306 degs) phi[4] = 3.141183 rads (179.976500 degs)

Energy = -0.339768 kcal/mol

LP Prediction/Global Minimum Difference (inf-norm) = 0.001609 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000012 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 17.087100 degs

Successive global conformers change (inf-norm) = 117.435000 degs

Energy improvement = 0.043014 kcal/mol

Repeat (y/n)? y

How many randomizations: 10
What fraction of the distance to the global min should be used [0,1): 0
Use how many points from previous run (global only/all): g

Within what radius of phi[ I I = 180.0177 (degs): 4
Within what radius of phi[2] = 179.9934 (degs): 4
Within what radius of phi[3] = 180.1494 (degs): 5
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Within what radius of phi[4) = 179.8843 (degs): 5

--> Using 10 randomizations

running QN-BFGS (using only global minimum) ... pass #3

Elapsed Real Time for QN-BFGS = 3.000 Seconds

--> 12 points reduced to 12 unique conformers

solving LP ...

Conformations: 12 (possibly non-unique)
Dihedral Angles:4
Quad Fit Error =0.000950 kcal/mol (sum of errors)
LP Pivots = 10

Interpolated Conformations:

23471012 (6 out of 12)

Convex Quadratic Underestimator:

c[O] = +88.986822
c[I] = -0.046979 d[l] = +0.000000
c[2] = -56.991488 d[2] = +18.152711
c[3] = +0.006854 d[31 = +0.000000
c[4 1 = +0.083894 d[41 = +0.000000

Max error in Quad Fit = 0.000436 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
7 0 1 2 0 1 0 0 0 1

Ranges on the Dihedrals (Degrees):

179.194700 <= phi[l] <= 180.700300
178.951300 <= phi[2] <= 180.893700
179.722400 <= phi[3] <= 180.467900
179.851200 <= phil4) <= 180.888000

Elapsed Real Time for LP = 0.000 Seconds

LP Predicted Dihedrals Current Global Minimum
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phi[l] = 3.141902 rads* (180.017700 degs) phi[I] = 3.141902 rads (180.017700 degs)
phi[2] = 3.139558 rads (179.883420 degs) phi[2] = 3.141477 rads (179.993400 degs)
phi[3] = 3.143699 rads* (180.120700 degs) phi[3] = 3.143699 rads (180.120700 degs)
phi[4] = 3.139963 rads* (179.906600 degs) phi[4] = 3.139963 rads (179.906600 degs)

Energy = -0.339793 kcal/mol

LP Prediction/Global Minimum Difference (inLfnorm) = 0.001920 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000033 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 0.110000 degs

Successive global conformers change (inf-norm) = 0.069900 degs

Energy improvement = 0.000025 kcal/mol

Repeat (y/n)? y

How many randomizations: 5
What fraction of the distance to the global min should be used [0,1 : 0
Use how many points from previous run (global only/all): g

Within what radius of phi[II = 180.0177 (degs): 0
Within what radius of phi[2] = 179.8834 (degs): 5
Within what radius of phij3) = 180.1207 (degs): 0
Within what radius of phi[4] = 179.9066 (degs): 0

--> Using 5 randomizations

running QN-BFGS (using only global minimum) ... pass #4

Elapsed Real Time for QN-BFGS = 1.000 Seconds

--> 7 points reduced to 7 unique conformers

solving LP ...

Conformations: 7 (possibly non-unique)
Dihedral Angles: 4
Quad Fit Error = 0.001902 kcal/mol (sum of errors)
LP Pivots = 12

Interpolated Conformations:

12347 (5outof7)

Convex Quadratic Underestimator:
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c[O] = +6.716253
c[ ] = -0.830429 d[ lI] = +0.000000
c42] = -0.061182 d[2] = +0.000000
c[31 = -0.464009 d[3] = +0.000000
c[4] = -0.890460 d[4] = +0.000000

Max error in Quad Fit = 0.001696 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
5 1 0 0 0 0 0 0 0 1

Ranges on the Dihedrals (Degrees):

179.979400 <= phi[ 1] <= 180.017700
179.261800 <= phi[2] <= 180.713700
179.971500 <= phil3] <= 180.120700
179.906600 <= phi [41 <= 180.009200

Elapsed Real Time for LP = 0.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[l] = 3.141902 rads* (180.017700 degs) phi[1] = 3.141902 rads (180.017700 degs)
phi[2] = 3.141477 rads* (179.993400 degs) phi[2] = 3.141477 rads (179.993400 degs)
phi[3] = 3.143699 rads* (180.120700 degs) phi[3] = 3.143699 rads (180.120700 degs)
phi[4] = 3.139963 rads* (179.906600 degs) phi[4] = 3.139963 rads (179.906600 degs)

Energy = -0.339793 kcal/mol

LP Prediction/Global Minimum Difference (infnorm) = 0.000000 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000000 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 0.110000 degs

Successive global conformers change (inf-norm) = 0.000000 degs

Energy improvement = 0.000000 kcal/mol

Repeat (y/n)? n
Run Complete....

D. Global Underestimator Run: 12 beads

Host Machine: csserverc Fri Apr 15 08:43:35 EDT 1994
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How many randomizations (at least 19): 60

Within what radius of phi[ I] = 330.0000 (degs): 180
Within what radius of phi[2] = 278.0000 (degs): 180
Within what radius of phi[3] = 123.0000 (degs): 180
Within what radius of phi[4] = 31.0000 (degs): 180
Within what radius of phi[5] = 160.0000 (degs): 180
Within what radius of phi[6J = 97.0000 (degs): 180
Within what radius of phi[7] = 27.0000 (degs): 180
Within what radius of phi[81 = 232.0000 (degs): 180
Within what radius of phi[9] = 38.0000 (degs): 180

--> Using 60 randomizations

running QN-BFGS (using all local minima) ... pass #1

Elapsed Real Time for QN-BFGS = 801.000 Seconds

--> 61 points reduced to 61 unique conformers

solving LP ...

Conformations: 61 (possibly non-unique)
Dihedral Angles: 9
Quad Fit Error = 84.557709 kcal/mol (sum of errors)
LP Pivots = 50

Interpolated Conformations:

2 5 13 20 2123 25 29 3133 37 39 42 55 57 61 (16 out of 61)

Convex Quadratic Underestimator:

c[0] = +4.689026
c[lI] = -0.211345 d[ = +0.083985
c[2] = -1.757095 d[21 = +0.538594
c(3] = -1.230106 d[3] = +0.284693
c14] = +0.149471 d[41 = +0.000000
c[51 = -0.109763 d[5] = +0.000000
c[6) = -0.016002 d[61 = +0.025305
c[7] = +0.012777 d[7] = +0.000000
c[81 = -0.931717 d[8] = +0. 188731
c[9] = +0.133952 d[9] = +0.003914

Max error in Quad Fit = 6.538950 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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26 14 3 7 1 6 0 1 2 1

Ranges on the Dihedrals (Degrees):

60.391500 <= phi[lIl <= 297.814200

61.145700 <= phi[2] <= 297.677800
60.504700 <= phi(3] <= 299.337000
60.057200 <= phi[4J <= 299.964500
61.774000 cc= phi[5] <= 301.509700
60.360500 <= phil6] <= 300.002300
61.171200 <= phi[7] <= 298.399200
59.886200 <= phi[81 <= 299.800300
61.052100 <= phi[91 <= 298.280100

Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[l] = 2.516461 rads (144.182610 degs) phi[ ] = 5.164642 rads (295.912200 degs)
phi[2] = 3.262374 rads (186.920255 degs) phi[2) = 3.002010 rads (172.002500 degs)
phi[3] = 4.320816 rads (247.564507 degs) phi[3] = 5.187037 rads (297.195300 degs)
phi[4] = 5.148753 rads* (295.001800 degs) phi[4] = 5.148753 rads (295.001800 degs)
phi[5] = 2.881113 rads* (165.075600 degs) phi[5] = 2.881113 rads (165.075600 degs)
phi[61 = 0.632365 rads ( 36.231854 degs) phi[6] = 5.153449 rads (295.270900 degs)
phi[7] = 3.109494 rads* (178.160900 degs) phi[71 = 3.109494 rads (178.160900 degs)
phi[8] = 4.936746 rads (282.854707 degs) phi[8] = 3.139512 rads (179.880800 degs)
phi[9] = 3.475300 rads (199.120016 degs) phi[9] = 1.065560 rads ( 61.052100 degs)

Energy = -1.784457 kcal/mol

LP Prediction/Global Minimum Difference (inf-norm) = 4.521084 degs
LP Prediction/Global Minimum Quad Function Difference = 0.638772 kcal/mol

Repeat (y/n)? y

How many randomizations: 60
What fraction of the distance to the global min should be used (0, 11: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[I] = 144.1826 (degs): ISO
Within what radius of phi[2] = 186.9203 (degs): 20
Within what radius of phil3] = 247.5645 (degs): 60
Within what radius of phil4] = 295.0018 (degs): 180
Within what radius of phil5] = 165.0756 (degs): 180
Within what radius o' phil6] = 36.2319 (degs): 160
Within what radius of phi[7] = 178.1609 (degs): 180
Within what radius of phi[81 = 282.8547 (degs): 120
Within what radius of phil91 = 199.1200 (degs): 150

-- > Using 60 randomizations
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running QN-BFGS (using only global minimum) ... pass #2

Elapsed Real Time for QN-BFGS = 765.000 Seconds

--> 62 points reduced to 62 unique conformers

solving LP ...

Conformations: 62 (possibly non-unique)
Dihedral Angles: 9
Quad Fit Error = 81.330506 kcal/mol (sum of errors)
LP Pivots = 49

Interpolated Conformations:

13 7 15 17 18 19 20 22 26 33 35 36 43 49 60 (16 out of 62)

Convex Quadratic Underestimator:

c(0] = +1225.378595
c[ 1 ] = +0.120373 d[ 1 ]=+0.000000
c[2] = -809.515465 d[2] = +267.458814
c[3] = +0.397725 d13) = +0.000000
c14] = -0.388046 d[41 = +0.104867
c[5] = -0.103557 d[5] = +0.000000
c[6] = -0.816778 d[6] = +0.223116
c[7] = -0.821738 d[7] = +0.232574
c[81 = -0.183396 d[8] = +0.089597
c[9] = -1.261490 d[9] = +0.369553

Max error in Quad Fit = 4.766802 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
22 11 4 0 14 5 1 0 2 3

Ranges on the Dihedrals (Degrees):

60.448900 <= phi[ I I <= 298.329800
172.002500 <= phi[2] <= 182.659000
173.720700 <= phi[31 <= 300.268000
60.647700 <= phi[4] <= 300.452200
62.011400 <= phi[5] <= 298.101000
59.459000 <= phi[6] <= 300.846400
60.256700 <= phi[7] <= 299.676000
62.973 100 <= phi[81 <= 301.085700
60.689600 <= phi[9] <= 298.120500
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Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[ I] = 1.088288 rads* ( 62.354300 degs) phi[ I] = 1.088288 rads ( 62.354300 degs)
phi[2] = 3.026692 rads (173.416680 degs) phi[2] = 3.093175 rads (177.225900 degs)
phi[3] = 5.181839 rads* (296.897500 degs) phi[3] = 5.181839 rads (296.897500 degs)
phi[4] = 3.700363 rads (212.015201 degs) phi[4] = 5.169088 rads (296.166900 degs)
phi[51 = 2.962707 rads* (169.750600 degs) phi[5] = 2.962707 rads (169.750600 degs)
phi[6] = 3.660777 rads (209.747092 degs) phi[6] = 5.171863 rads (296.325900 degs)
phi[71 = 3.533232 rads (202.439306 degs) phi[7] = 5.200229 rads (297.951200 degs)
phi[8] = 2.046899 rads (117.278668 degs) phi[8] = 3.078949 rads (176.410800 degs)
phi[9] = 3.413556 rads (195.582374 degs) phi[9] = 3.161196 rads (181.123200 degs)

Energy = -2.476850 kcal/mol

LP Prediction/Global Minimum Difference (inf._norm) = 1.666997 degs
LP Prediction/Global Minimum Quad Function Difference = 1.341558 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 173.515200 degs

Successive global conformers change (inf-norm) = 233.557900 degs

Energy improvement = 0.692393 kcal/mol

Repeat (y/n)? y

How many randomizations: 50
What fraction of the distance to the global min should be used [0,1 : .5
Use how many points from previous run (global only/all): g

Within what radius of phi[ I] = 62.3543 (degs): 90
Within what radius of phi[2] = 175.3213 (degs): 10
Within what radius of phi[31 = 296.8975 (degs): 20
Within what radius of phi[4] = 254.0911 (degs): 50
Within what radius of phi[5] = 169.7506 (degs): 180
Within what radius of phi[6] = 253.0365 (degs): 50
Within what radius of phi[7] = 250.1953 (degs): 50
Within what radius of phi[8] = 146.8447 (degs): 50
Within what radius of phi[9] = 188.3528 (degs): 20

--> Using 50 randomizations

running QN-BFGS (using only global minimum) ... pass #3

Elapsed Real Time for QN-BFGS = 526.000 Seconds
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-- , 52 points reduced to 52 unique conformers

solving LP ...

Conformations: 52 (possibly non-unique)
Dihedral Angles: 9
Quad Fit Error = 57.460679 kcal/mol (sum of errors)
LP Pivots = 37

Interpolated Conformations:

1 5 19 20 24 26 29 31 35 36 38 40 48 (13 out of 52)

Convex Quadratic Underestimator:

c[O] = +15577.752075
c[l] = -1.572693 d 1I] = +0.545076
c[2] = -25.942274 d[2] = +0.000000
c[31 = -5963.287255 d[3] = +1 147.053749
c[4] = +0.145274 d[4] = +0.000000
c[51 = -5.584252 d[51 = +1.658767
c(6] = +0.321134 d[6] = +0.000000
c[7] = +0.015908 d[7] = +0.000000
c[8] = -1.244513 d[81 = +0.000000
c[9] = +4.039473 d[91 = +0.000000

Max error in Quad Fit = 3.752148 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
21 5 4 3 1 10 3 1 1 3

Ranges on the Dihedrals (Degrees):

61.855600 <= phi[ I] <= 299.884300
174.944100 <= phi[2] <= 180.196500
295.252600 <= phi[3] <= 301.388600
173.238200 <= phi[4] <= 298.52 1300
62.177300 <= phi[5] <= 297.667 100
173.984000 <= phi[6] <= 298.358300
173.549100 <= phil7] <= 298.672900
62.715800 <= phi[8] <= 182.877300
179.081600 <= phil9] <= 181.467600

Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum
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phi[l] = 2.885273 rads (165.313959 degs) phi[l] = 3.146818 rads (180.299400 degs)
phi[2) = 3.100785 rads* (177.661900 deg) phil2] = 3.100785 rads (177.661900 degs)
phil3I = 5.198786 rads (297.868511 degs) phi[31 = 5.191986 rads (297.478900 degs)
phi[41 = 5.161232 rads* (295.716800 degs) phil41 = 5.161232 rads (295.716800 degs)
phi[5] = 3.366508 rads (192.886687 degs) phi[5] = 2.960618 rads (169.630900 degs)
phi[6] = 5.160511 rads* (295.675500 degs) phi[6] = 5.160511 rads (295.675500 degs)
phi[7] = 5.189426 rads* (297.332200 degs) phi[7] = 5.189426 rads (297.332200 degs)
phi[8] = 3.092086 rads* (177.163500 degs) phil8] = 3.092086 rads (177.163500 degs)
phi[9] = 3.144113 rads* (180.144400 degs) phi[9] = 3.144113 rads (180.144400 degs)

Energy = -3.006272 kcal/mol

LP Prediction/Global Minimum Difference (inf.norm) = 0.405890 degs
LP Prediction/Global Minimum Quad Function Difference = 0.181801 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 102.959700 degs

Successive global conformers change (inf-norm) = 117.945100 degs

Energy improvement = 0.529422 kcal/mol

Repeat (y/n)? y

How many randomizations: 40
What fraction of the distance to the global min should be used [0,1]: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[ 1] = 165.3140 (degs): 20
Within what radius of phi[2] = 177.6619 (degs): 5
Within what radius of phi[3] = 297.8685 (degs): 5
Within what radius of phi[4] = 295.7168 (degs): 30
Within what radius of phi[5] = 192.8867 (degs): 40
Within what radius of phi[6] = 295.6755 (degs): 30
Within what radius of phi[7] = 297.3322 (degs): 30
Within what radius of phi[8] = 177.1635 (degs): 30
Within what radius of phil9] = 180.1444 (degs): 5

--> Using 40 randomizations

running QN-BFGS (using only global minimum) ... pass #4

Elapsed Real Time for QN-BFGS = 404.000 Seconds

--> 42 points reduced to 42 unique conformers

solving LP ...

- - - - - -- - - -
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Conformations: 42 (possibly non-unique)
Dihedral Angles: 9
Quad Fit Error = 0.014822 kcal/mol (sum of errors)
LP Pivots = 59

Interpolated Conformations:

4 7 12 13 19 25 30 31 35 38 40 42 (12 out of 42)

Convex Quadratic Underestimator:

c[O] = +325.080069
c[I] = +0.008313 d[1] = +0.000000
c[21 = -135.613593 d[2] = +43.781435
c[3] = +0.110036 d[3] = +0.000000
c[4] = +0.065432 d[4] = +0.000000
c[5] = +0.011291 d[5] = +0.000000
c[6] = +0.040999 d[61 = +0.000000
c[7] = +0.107349 d[7] = +0.000000
c[8] = -77.185222 d[8] = +24.898707
c[9] = -0.049789 d[9] = +0.000000

Max error in Quad Fit = 0.002218 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
25 8 1 2 2 0 1 1 0 2

Ranges on the Dihedrals (Degrees):

179.779000 <= phi[ 1] <= 180.801700
177.013000 <= phi[2] <= 178.108200
297.070900 <= phi[3] <= 297.976400
295.240900 <= phi[4] <= 296.027200
169.495500 <= phi[5] <= 170.144400
295.366900 <= phi[6] <= 296.239900
297.076300 <= phif 7] <= 297.772 100
176.903600 <= phi[8] <= 178.036600
179.817 100 <= phi[9] <= 180.388500

Elapsed Real Time for LP = 1.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[ II = 3.144677 rads* (180.176700 degs) phi[l ] = 3.144677 rads (180.176700 degs)
phi[2J = 3.097514 rads (177.474460 degs) phi[2] = 3.096150 rads (177.396300 degs)
phi[31 = 5.191054 rads* (297.425500 degs) phi[3] = 5.191054 rads (297.425500 degs)
phi[4] = 5.162241 rads* (295.774600 degs) phi[4I = 5.162241 rads (295.774600 degs)
phi[51 = 2.965339 rads* (169.901400 degs) phi[5] = 2.965339 rads (169.901400 degs)
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phi[6] = 5.162111 rads* (295.767200 degs) phi[6] = 5.162111 rads (295.767200 degs)
phi[7] = 5.190196 rads* (297.376300 degs) phi[7] = 5.190196 rads (297.376300 degs)
phi[8] = 3.099969 rads (177.615145 degs) phil8] = 3.096898 rads (177.439200 degs)
phi(91 = 3.144771 rads* (180.182100 degs) phil91 = 3.144771 rads (180.1821 ')0 degs)

Energy = -3.007255 kcal/mol

LP Predi..,on/Global Minimum Difference (inf-norm) = 0.003071 degs
LP Prediction/Global Minimum Quad Function Difference = 0.000158 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 22.985300 degs

Successive global conformers change (inf-norm) = 0.275700 degs

Energy improvement =C 000983 kcal/mol

Repeat (y/n)? y

How many randomizations: 20
What fraction of the distance to the global min should be used [0,1]: 1
Use how many points from previous run (global only/all): g

Within what radius of phi[ I ] = 180.1767 (degs): 10
Within what radius of phi[2] = 177.3963 (degs): 10
Within what radius of phif31 = 297.4255 (degs): 10
Within what radius of phi[4] = 295.7746 (degs): 10
Within what radius of phi[5] = 169.9014 (degs): 10
Within what radius of phi[6] = 295.7672 (degs): 10
Within what radius of phi[7] = 297.3763 (degs): 10
Within what radius of phi[8] = 177.4392 (degs): 10
Within what radius of phi[91 = 180.1821 (degs): 10

--> Using 20 randomizations

running QN-BFGS (using only global minimum) ... pass #5

Elapsed Real Time for QN-BFGS = 159.000 Seconds

--> 22 points reduced to 22 unique conformers

solving LP ...

Conformations: 22 (possibly non-unique)
Dihedral Angles: 9
Quad Fit Error = 0.008593 kcal/mol (sum of errors)
LP Pivots = 60

Interpolated Conformations:
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1 34789 12 13 1920 (10out of 22)

Convex Quadratic Unaerestimator:

c[0] = +0.000000
c[l] = +0.018242 d[l] = +0.000000
c[21 = +0.183987 d[21 = +0.000000
c[3] = +0.178514 d[3] = +0.000000
c[4] = +0.083497 d[4] = +0.000000
c[5] = -0.124721 d[51 = +0.000000
c[6] = -2.012263 d[61 = +0.407210
c[7] = +0.131898 d[7] = +0.000000
c[81 = -0.060945 d[8] = +0.000000
c[9] = -0.049604 d[9] = +0.000000

Max error in Quad Fit = 0.002296 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 90% 90% 100%
13 4 0 1 2 0 0 1 1

Ranges on the Dihedrals (Degrees):

179.959300 <= phi[I] <= 180.312200
177.251800 <= phi[2] <= 177.660500
297.214300 <= phil3) <= 297.691900
295.571800 <= phi[4] <= 295.963200
169.559600 <= phi[5] <= 170.075500
295.394000 <= phi[6] <= 296.500900
297.208700 <= phi[7] <= 297.696600
177.086200 <= phil8] <= 177.760500
180.000700 <= phi[9] <= 180.531600

Elapsed Real Time for LP = 0.000 Seconds

LP Predicted Dihedrals Current Global Minimum

r)hi[ II = 3.144677 rads* (180.176700 degs) phi[l ] = 3.144677 rads (180.176700 degs)
phi[2] = 3.096150 rads* (177.396300 degs) phi[2] = 3.096150 rads (177.396300 degs)
phi[3] = 5.191054 rads* (297.425500 degs) phi[3] = 5.191054 rads (297.425500 degs)
phi[4] = 5.162241 rads* (295.774600 degs) phi[4] = 5.162241 rads (295.774600 degs)
phi[51 = 2.965339 rads* (169.901400 degs) phi[5] = 2.965339 rads (169.901400 degs)
phi[6] = 4.941585 rads (283.131989 degs) phi[6] = 5.162111 rads (295.767200 degs)
phi[7] = 5.190196 rads* (297.376300 degs) phi[71 = 5.190196 rads (297.376300 degs)
phi[8] = 3.096898 rads* (177.439200 degs) phi[8] = 3.096898 rads (177.439200 degs)
phi[9] = 3.144771 rads* (180.182100 degs) phil9] = 3.144771 rads (180.182100 degs)

Energy = -3.007255 kcal/mol
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LP Prediction/Global Minimum Difference (infjnorm) = 0.220526 degs
LP Prediction/Global Minimum Quad Function Difference = 0.009902 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 12.635200 degs

Successive global conformers change (inf-norm) = 0.000000 degs

Energy improvement = 0.000000 kcal/mol

Repeat (y/n)? n
Run Complete....

E. Global Underestimator Run: 22 beads
Host Machine: csserverc Wed Apr 20 07:12:32 EDT 1994

How many randomizations (at least 39): 100

Within what radius of phi[l] = 330.0000 (degs): 180
Within what radius of phil2] = 278.0000 (degs): 180
Within what radius of phit3J = 123.0000 (degs): 180
Within what radius of phi[41 = 31.0000 (degs): 180
Within what radius of phi[51 = 160.0000 (degs): 180
Within what radius of phi[6] = 97.0000 (degs): 180
Within what radius of phil7J = 27.0000 (degs): 180
Within what radius of phi[81 = 232.0000 (degs): 180
Within what radius of phil9] = 38.0000 (degs): 180
Within what radius of phi[l10] = 213.0000 (degs): 180
Within what radius of phi[ I 1I] = 311.0000 (degs): 180
Within what radius of phi[121 = 137.0000 (degs): 180
Within what radius of phi[131 = 28.0000 (degs): 180
Within what radius of phil 14] = 16.0000 (degs): 180
Within what radius of phil15] = 323.0000 (degs): 180
Within what radius of phi[ 161 = 222.0000 (degs): 180
Within what radius of phi[ 17] = 289.0000 (degs): 180
Within what radius of phi[ 18] = 120.0000 (degs): 180
Within what radius of phi[19] = 179.0000 (degs): 180

--> Using 100 randomizations

running QN-BFGS (using all local minima) ... pass #1

Elapsed Real Time for QN-BFGS = 14465.000 Seconds

--> 99 points reduced to 99 unique conformers

solving LP ...
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Conformations: 99 (possibly non-unique)
Dihedral Angles: 19
Quad Fit Error = 261.999901 kcal/mol (sum of errors)
LP Pivots = 126

Interpolated Conformations:

2 4 5 7 17 18 25 26 28 30 33 35 38 39 40 42 45 52 53 56 57 59 60 63 64 71 72 76 77 79 81 83 84
87 94 99 (36 out of 99)

Convex Quadratic Underestimator:

c[O] = +15.809699
c[!] = -0.238399 d[ 1] = +0.092840
c[2] = -1.555963 d[2] = +0.374113
c[3] = +0.041718 d[31 = +0.000000
c[4] = +0.320074 d[4] = +0.148104
c[5] = -0.523003 d[5] = +0.140036
c[6] = -1.399913 d[6] = +0.504272
c[7] = -2.284349 d[7] = +0.802268
c[8] = -0.884438 d[8] = +0.334472
c[9] = -0.529013 d[9] = +0.000000
c[10] = -1.135499 d[10] = +0.241783
c[ I1] = +0.393577 d[Il] = +0.000000
c[ 12) = - 1.486392 d[ 12) = +0.398304
c[131 = +0.095308 d[13] = +0.014153
c[ 14] = -0.221887 d[ 14] = +0.082623
c[15] = -2.938166 d[15] = +0.789750
c[ 16] = -2.479375 d[16] = +0.895932
c[17] = -1.420245 d[17] = +0.501218
c[18] = -0.300846 d[18] = +0.192963
c[19] = -1.454993 d[19] = +0.375462

Max error in Quad Fit = 10.712270 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
43 10 8 12 9 4 6 3 2 2

Ranges on the Dihedrals (Degrees):

60.764300 <= phi[ I] <= 300.277800
58.390200 <= phil2] <= 301.986700
55.255200 <= phil3] <= 300.553900
57.929100 <= phi[4] <= 302.100000
54.104100 <= phil5] <= 302.815000
61.046500 <= phil6] <= 304.852100
53.912900 <= phi[7] <= 309.291800
51.561400 <= phi[8] <= 305.891100
53.754300 <= phi[91 <= 307.740200
51.790700 <= phi[ 101 <= 307.421300
52.621200 <= phi[I II <= 310.690700
52.233600 <= phil 121 <= 305.259600
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59.822800 <= phi[13] <= 306.844000
54.681400 <= phi[141 <= 303.379200
51.037900 <= phi[151 <= 303.680100
57.200900 <= phi[16] <= 304.314400
57.143800 <= phi[ 17] <= 301.433200
60.315100 <= phi[ 18] <= 300.888600
59.358800 <= phi[19] <= 300.052300

Elapsed Real Time for LP = 4.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[lI = 2.567848 rads (147.126848 degs) phi[l] = 3.105243 rads (177.917300 degs)
phi[2] = 4.159072 rads (238.297287 degs) phi[2] = 3.183406 rads (182.395700 degs)
phi[3] = 1.078123 rads* ( 61.771900 degs) phi[3] = 1.078123 rads ( 61.771900 degs)
phi[41 = 4.122042 rads (236.175597 degs) phi[4] = 3.164792 rads (181.329200 degs)
phil5] = 3.734775 rads (213.986865 degs) phil5) = 3.149208 rads (180.436300 degs)
phil6] = 2.776107 rads (159.059211 degs) phi[6] = 1.088523 rads ( 62.367800 degs)
phi[7] = 2.847364 rads (163.141938 degs) phi[7] = 3.071958 rads (176.010200 degs)
phi[81 = 2.644281 rads (151.506149 degs) phi[8] = 3.145982 rads (180.251500 degs)
phi[9] = 5.148346 rads* (294.978500 degs) phi[9) = 5.148346 rads (294.978500 degs)
phi[10] = 4.696356 rads (269.081368 degs) phi[10] = 3.022744 rads (173.190500 degs)
phi[l 1] = 5.165801 rads* (295.978600 degs) phi[lI] = 5.165801 rads (295.978600 degs)
phi[121 = 3.731803 rads (213.816553 degs) phi[12] = 5.196676 rads (297.747600 degs)
phi[13] = 5.832251 rads (334.163347 degs) phil13] = 5.129713 rads (293.910900 degs)
phi[ 141 = 2.685536 rads (153.869850 degs) phi[ 14] = 1.678839 rads ( 96.190400 degs)
phi[ 15] = 3.720375 rads (213.161774 degs) phi[ 15] = 1.144625 rads ( 65.582200 degs)
phi[ 161 = 2.767370 rads (158.558600 degs) phi[ 16] = 3.288972 rads (188.444200 degs)
phi[17] = 2.833587 rads (162.352598 degs) phi[17] = 1.174315 rads ( 67.283300 degs)
phit 18] = 1.559086 rads ( 89.329074 degs) phi[ 181 = 3.072954 rads (176.067300 degs)
phi[19] = 3.875207 rads (222.033010 degs) phil19] = 3.208947 rads (183.859100 degs)

Energy = -7.449145 kcal/mol

LP Prediction/Global Minimum Difference (inf-norm) = 2.575749 degs
LP Prediction/Global Minimum Quad Function Difference = 4.595416 kcal'mol

Repeat (y/n)? y

How many randomizations: 75
What fraction of the distance to the global min should be used 10,11: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[ I ] = 147.1268 (degs): 35
Within what radius of phil2l = 238.2973 (degs): 55
Within what radius of phi[3] = 61.7719 (degs): 180
Within what radius of phif41 = 236.1756 (degs): 55
Within what radius of phil5] = 213.9869 (degs): 35
Within what radius of phil6] = 159.0592 (degs): 100
Within what radius of phi[7] = 163.1419 (degs): 15
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Within what radius of phi[8] = 151.5061 (degs): 30
Within what radius of phi[9] = 294.9785 (degs): 180
Within what radius of phi[ 10] = 269.0814 (degs): 100
Within what radius of phi[ 11] = 295.9786 (degs): 180
Within what radius of phi[12] = 213.8166 (degs): 85
Within what radius of phi[ 131 = 334.1633 (degs): 35
Within what radius of phi[ 14] = 153.8699 (degs): 60
Within what radius of phi[15] = 213.1618 (degs): 150
Within what radius of phi[16] = 158.5586 (degs): 30
Within what radius of phi[ 17] = 162.3526 (degs): 105
Within what radius of phi[ 18J = 89.3291 (degs): 90
Within what radius of phi[ 19] = 222.0330 (degs): 40

--> Using 75 randomizations

running QN-BFGS (using only global minimum) ... pass #2

Elapsed Real Time for QN-BFGS = 6746.000 Seconds

--> 77 points reduced to 77 unique conformers

solving LP ...

Conformations: 77 (possibly non-unique)
Dihedral Angles: 19
Quad Fit Error = 180.596223 kcal/mol (sum of errors)
LP Pivots = 159

Interpolated Conformations:

1 68921 2324263031 344142444548516062646769727576 (25 out of 77)

Convex Quadratic Underestimator:

c[O] = +144.561300
c[1] = -34.584215 d[] = +16.810994
c[21 = -13.561606 d[2] = +3.534313
c[3] = -0.939967 d[3] = +0.000000
c[41 = +0.845433 d[4] = +0.000000
c[5] = -31.655626 d[5] = +7.783377
c[6] = -0.457572 d[6] = +0.000000
c(7] = -5.701583 d[7] = +0.000000
c[8] = -1.826113 d[81 = +0.000000
c(9] = -0.438230 d[9] = +0.000000
c[10] = +0.490778 d[10] = +0.000000
c[ 11 ] = -2.679081 d[ I I ] = +0.807040
c[12) = -0.166776 d[12] = +0.000000
c[ 13] = -0.366454 d[13] = +0.000000
c[14] = +0.147614  d[141 = +0.000000
c[15] = +0.104883 d[15] = +0.000000
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c[16] = -3.023704 d[16] = +0.000000
c[17] = -0.722325 d[171 = +0.227437
c[181 = -0.905696 d[181 = +0.000000
c[ 19] = +0.756502 d[191 = +0.000000

Max error in Quad Fit 9.905244 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
30 6 10 12 7 7 3 1 0 1

Ranges on the Dihedrals (Degrees):

61.225300 <= phi[lI] <= 181.832900
175.450700 <= phi[2] <= 301.786100
60.548900 <= phi[3] <= 301.842700
169.540400 <= phi[4] <= 299.865600
159.878900 <= phi[5] <= 299.666000
53.564400 <= phi[6] <= 303.470100
165.506600 <= phi[7] <= 207.251100
75.822700 <= phi[8] <= 205.201600
57.909800 <= phi[9] <= 307.113 100
55.031500 <= phi[10] <= 311.931900
49.647200 <= phi[1 I] <= 301.752600
150.413300 <= phil 12] <= 311.839200
55.901100 <= phi[131 <= 308.383200
58.148900 <= phi[ 14] <= 198.021200
55.392300 <= phi[ 15] <= 305.325 100
170.785700 <= phi[16] <= 193.669800
57.015500 <= phi[171 <= 302.169300
59.621500 <= phi[ 18] <= 183.323300
174.983 100 <= phi[ 19] <= 297.404000

Elapsed Real Time for LP = 3.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[I] = 2.057238 rads (117.871053 degs) phi[Il] = 1.101978 rads ( 63.138700 degs)
phil2] = 3.837126 rads (219.851153 degs) phil2] = 3.157618 rads (180.918200 degs)
phil3] = 1.056778 rads* ( 60.548900 degs) phi[3] = 1.056778 rads ( 60.548900 degs)
phil4] = 3.172085 rads* (181.747100 degs) phi[4] = 3.172085 rads (181.747100 degs)
phi[5] = 4.067081 rads (233.026586 degs) phi[5] = 3.115551 rads (! 7 8.507900 degs)
phil6] = 5.234387 rads* (299.908300 degs) phi[6] = 5.234387 rads (299.908300 degs)
phil 7] = 3.154526 rads* (180.741000 degs) phi[7] = 3.154526 rads (180.741000 degs)
phi[81 = 3.083152 rads* (176.651600 degs) phil8] = 3.083152 rads (176.651600 degs)
phil9] = 5.186810 rads* (297.182300 degs) phi[9] = 5.186810 rads (297.182300 degs)
phi(10] = 5.233930 rads* (299.882100 degs) phil[10 = 5.233930 rads (299.882100 degs)
phi[ II) = 3.319638 rads (190.201272 degs) phi[1 ] = 3.052165 rads (174.876200 degs)
phi[ 12] = 5.244374 rads* (300.480500 degs) phi[ 12] = 5.244374 rads (300.480500 degs)
phi[ 131 = 5.211585 rads* (298.601800 degs) phi[ 13] = 5.211585 rads (298.601800 degs)
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phi[ 14] = 3.067434 rads* (175.751000 degs) phil 14] = 3.067434 rads (175.751000 degs)
phil 151 = 5.241103 rads* (300.293100 degs) phi[ 151 = 5.241103 rads (300.293100 degs)
phil 16] = 3.108295 rads* (178.092200 degs) phi[16] = 3.108295 rads (178.092200 degs)
phi[171 = 3.175934 rads (181.967639 degs) phil17] = 3.155606 rads (180.802900 degs)
phi[18] = 1.040591 rads* ( 59.621500 degs) phi[18] = 1.040591 rads ( 59.621500 degs)
phi[191 = 3.149848 rads* (180.473000 degs) phi[l19] = 3.149848 rads (180.473000 degs)

Energy = -8.726705 kcal/mol

LP Prediction/Global Minimum Difference (inLfnorm) = 0.955260 degs
LP Prediction/Global Minimum Quad Function Difference = 12.038637 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 140.849100 degs

Successive global conformers change (inf-norm) = 237.540500 degs

Energy improvement = 1.277560 kcal/mol

Repeat (y/n)? y

How many randomizations: 65
What fraction of the distance to the global min should be used [0,1]: 0.5
Use how many points from previous run (global only/all): g

Within what radius of phi[ 1] = 90.5049 (degs): 30
Within what radius of phi[2] = 200.3847 (degs): 20
Within what radius of phil3] = 60.5489 (degs): 180
Within what radius of phi[4] = 181.7471 (degs): 60
Within what radius of phi[51 = 205.7672 (degs): 25
Within what radius of phil6I = 299.9083 (degs): 60
Within what radius of phi[7] = 180.74 10 (degs): 5
Within what radius of phil8] = 176.6516 (degs): 10
Within what radius of phil9] = 297.1823 (degs): 60
Within what radius of phil[10 = 299.8821 (degs): 10
Within what radius of phi[ 11] = 182.5387 (degs): 5
Within what radius of phil 12] = 300.4805 (degs): 60
Within what radius of phi[ 13] = 298.6018 (degs): 5
Within what radius of phif 14] = 175.7510 (degs): 60
Within what radius of phi[ 151 = 300.2931 (degs): 60
Within what radius of phi[ 16] = 178.0922 (degs): 10
Within what radius of phi[ 171 = 181.3853 (degs): 5
Within what radius of phi[ 18] = 59.6215 (degs): 60
Within what radius of phi[ 191 = 180.4730 (degs): 20

--> Using 65 randomizations

running QN-BFGS (using only global minimum) ... pass #3

Elapsed Real Time for QN-BFGS = 7484.000 Seconds
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--> 67 points reduced to 67 unique conformers

solving LP ...

Conformations: 67 (possibly non-unique)
Dihedral Angles: 19
Quad Fit Error= 0.713424 kcal/mol (sum of errors)
LP Pivots = 124

Interpolated Conformations:

12 3 6 8 12 17 2124 26 29 30 39 40 4142 43 44 46 47 48 49 50 52 55 58 6166 67 (29 out of 67)

Convex Quadratic Underestimator:

c[0] = +862.353679
c[l] = +1.576256 d[Il] = +0.000000
c[2] = + 11.505862 d(2] = +0.000000
c[3] = -0.755355 d[3] = +0.265304
c[4] = +0.861950 d[4] = +0.000000
c[5] = +1.905837 d[5] = +0.000000
c[6] = -14.157930 d[61 = +4.433968
c[7] = -8.344343 d[7] = +0.386241
c[8] = -3.335837 d[8] = +0.000000
c[9] = +3.106748 d[9] = +0.000000
c[10] = -68.281811 d[10] = +13.059085
c[I 1 = -8.726862 d[l 1] = +2.753363
c[12] = -3.075571 d[12] = +0.000000
c[13] = +3.623808 d[13] = +0.000000
c[14] = -22.205927 d[14] = +7.411516
c[15] = +0.243679 d[15] = +0.000000
c[16] = -31.923569 d[16] = +10.592633
c[17] = -0.710224 d[171 = +0.000000
c[18] = -5.924978 d[ 18] = + 1.949442
c[19] = -391.635793 d[19] = +126.049962

Max error in Quad Fit = 0.073463 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
41 6 6 6 5 0 1 0 ! 1

Ranges on the Dihedrals (Degrees):

59.668300 <= phi[ 1] <= 180.233200
173.662000 <= phi[2] <= 186.797300
60.465200 <= phi[3] <= 302.153700
168.498000 <= phi[41 <= 302.173200
153.880200 <= phi[5] <= 297.450400
58.388000 <= phi[61 <= 306.578200
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173.159200 <= phi[7] <= 302.506900
64.552300 <= phi[8] <= 294.232600
72.285500 <= phi[91 <= 303.774700
188.202400 <= phi[ 101 <= 305.621100
161.972500 <= phi[11] <= 294.907100
177.360700 <= phi[12] <= 306.147500
57.296400 <= phi[ 13) <= 301.846000
60.468000 <= phi[14] <= 293.192800
176.636700 <= phi[ 15] <= 304.215300
64.959300 <= phi[16] <= 301.386800
173.914200 <= phi[ 171 <= 300.148500
55.501000 <= phi[18] <= 302.929000
176.297300 <= phi[19] <= 184.395 100

Elapsed Real Time for LP = 3.000 Seconds

LP Predicted Dihedrals Current Global Minimum

phi[1] = 1.114948 rads* ( 63.881800 degs) phi[l] = 1.114948 rads (63.881800 degs)
phi(21 = 3.146228 rads* (180.265600 degs) phi[2] = 3.146228 rads (180.265600 degs)
phil3] = 2.847130 rads (163.128538 degs) phi[W] = 5.212571 rads (298.658300 degs)
phi[4] = 3.074986 rads* (176.183700 degs) phi[4] = 3.074986 rads (176.183700 degs)
phi[5] = 5.191489 rads* (297.450400 degs) phi[5] = 5.191489 rads (297.450400 degs)
phi[6] = 3.193061 rads (182.948915 degs) phi[6] = 5.151067 rads (295.134400 degs)
phi[7] = 2.754424 rads (157.816899 degs) phi[7] = 3,022198 rads (173.159200 degs)
phi[I8] = 5.135328 rads* (294.232600 degs) phi[8] = 5.135328 rads (294.232600 degs)
phi[9] = 5.124215 rads* (293.595900 degs) phi(9J = 5.124215 rads (293.595900 degs)
phil10] = 5.228683 rads (299.581448 degs) phi[10] = 5.144740 rads (294.771900 degs)
phi[ 11] = 3.169528 rads (181.600596 degs) phi[ 11] = 2.983309 rads (170.931000 degs)
phi[ 12] = 5.130233 rads* (293.940700 degs) phi[ 12] = 5.130233 rads (293.940700 degs)
phil13] = 5.268207 rads* (301.846000 degs) phi[131 = 5.268207 rads (301.846000 degs)
phi[141 = 2.996138 rads (171.666080 degs) phi[14] = 3.172427 rads (181.766700 degs)
phi[ 15] = 5.266020 rads* (301.720700 degs) phi[ 15] = 5.266020 rads (301.720700 degs)
phi[161 = 3.013752 rads (172.675271 degs) phi[161 = 3.190450 rads (182.799300 degs)
phi[171 = 3.223166 rads* (184.673800 degs) phi[17] = 3.223166 rads (184.673800 degs)
phil 18] = 3.039320 rads (174.140207 degs) phi[18] = 1.153593 rads ( 66.096000 degs)
phi[ 19) = 3.106989 rads (178.017333 degs) phi[19] = 3.169434 rads (181.595200 degs)

Energy = - 10.974719 kcal/mol

LP Prediction/Global Minimum Difference (inf.norm) = 2.365441 degs
LP Prediction/Global Minimum Quad Function Difference = 11.392121 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 117.581000 degs

Successive global c.emformers change (inm-norm) = 238.109400 degs

Energy improvement = 27248014 kcal/mol
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Repeat (y/n)? y

How many randomizations: 60
What fraction of the distance to the global min should be used [0,1 ]: 0
Use how many points from previous run (global only/all): g

Within what radius of phi[1] = 63.8818 (degs): 5
Within what radius of phi[2] = 180.2656 (degs): 5
Within what radius of phi[3] = 163.1285 (degs): 100
Within what radius of phi[4] = 176.1837 (degs): 5
Within what radius of phi[5] = 297.4504 (degs): 45
Within what radius of phi[6] = 182.9489 (degs): 100
Within what radius of phi[7] = 157.8169 (degs): 15
Within what radius of phil81 = 294.2326 (degs): 5
Within what radius of phi[9] = 293.5959 (degs): 20
Within what radius of phi[10] = 299.5814 (degs): 5
Within what radius of phi[ I] = 181.6006 (degs): 10
Within what radius of phi[ 121 = 293.9407 (degs): 20
Within what radius of phi[13] = 301.8460 (degs): 5
Within what radius of phi[ 14] = 171.6661 (degs): 10
Within what radius of phi[15] = 301.7207 (degs): 10
Within what radius of phi[ 16] = 172.6753 (degs): 10
Within what radius of phi[ 17] = 184.6738 (degs): 5
Within what radius of phi[181 = 174.1402 (degs): 100
Within what radius of phi[191 = 178.0173 (degs): 5

--> Using 60 randomizations

running QN-BFGS (using only global minimum) ... pass #4

Elapsed Real Time for QN-BFGS = 5461.000 Seconds

--> 62 points reduced to 62 unique conformers

solving LP ...

Conformations: 62 (possibly non-unique)
Dihedral Angles: 19
Quad Fit Error =4.658270 kcal/mol (sum of errors)
LP Pivots = 179

Interpolated Conformations:

16912 15172122243033363841484950515556575960 (23 out of 62)

Convex Quadratic Underestimator:

cdO] = +1555.161908
c[I 1 = -34.543558 d[ I 1 = +0.000000
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c[2] = -223.829278 d[2] = +75.446077
c[3] = -0.293176 d[3] = +0.000000
c[4] = -4.439108 d[4) = +0.000000
c[5] = +4.849708 d[5] = +0.000000
c[6] = -2.616177 d[6] = +0.000000
c[7] = +13.611229 d[7] = +0.000000
c[8] = -6.794006 d[8] = +0.000000
c[9] = - 14.933655 d[9] = +0.000000
c[lO] = +2.805539 d[1O] = +0.000000
c[lII] = -637.240473 dIll] = +210.926966
c[12] = -19.966918 d[12] = +0.000000
c[13] = -1.045903 d[13] = +0.000000
c[14) = -121.797891 d[14) = +35.933857
c[15] = -13.684770 d[15] = +0.000000
c[16] = +8.283929 d[16] = +0.000000
c[17] = +26.833230 d[17] = +0.000000
c[18] = +0.768751 d[18) = +0.000000
c[19] = +30.518616 d[19] = +0.000000

Max error in Quad Fit - 0.462053 kcal/mol

Distribution of Errors (% of Max)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
36 8 4 2 7 1 2 0 1 1

Ranges on the Dihedrals (Degrees):

59.754i00<=phi[1] <= 64.670100
174.363600 <= phil2] <= 185.634700
58.142400 <= phi[3] <= 299.767500
165.275500 <= phi[4] <= 193.215700
183.900100 <= phil5] <= 301.015500
52.505800 <= phi[6] <= 303.772100
168.653900 <= phi[7] <= 187.344800
288.604600 <= phi[8] <= 303.332400
290.888000 <= phi[9] <= 300.782500
289.843600 <= phi[ 101 <= 306.124200
170.113300 <= phi[ 1] <= 182.814400
289.565600 <= phi[ 12] <= 306.767000
291.950200 <= phi[ 13] <= 303.437500
168.734700 <= phi[ 14] <= 192.165600
291.373000 <= phil15] <= 307.080400
172.934 100 <= phi[161 <= 186.826300
173.068600 <= phil 17] <= 191.041000
57.784600 <= phi[ 18] <= 300.637400
175.891700 <= phi[ 19] <= 182.798600

Elapsed Real Time for LP = 4.000 Seconds

LP Predicted Dihedrals Current Global Minimum
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phi[ I= 1.114948 rads* (63.881800degs) phi[l] = 1.114948 rads (63.881800 degs)
phi[2] = 2.966745 rads (169.981972 degs) phi[2] = 3.146228 rads (180.265600 degs)
phi[31 = 5.212571 rads* (298.658300 degs) phi[3] = 5.212571 rads (298.658300 degs)
phi[4] = 3.074986 rads* (176.183700 degs) phi[41 = 3.074986 rads (176.) 83700 degs)
phi[5] = 5.191489 rads* (297.450400 degs) phi[5] = 5.191489 rads (297.450400 degs)
phi[6] = 5.151067 rads* (295.134400 degs) phi[6] = 5.151067 rads (295.134400 degs)
phi[7] = 3.022198 rads* (173.159200 degs) phil7] = 3.022198 rads (173.159200 degs)
phi[8] = 5.135328 rads* (294.232600 degs) phi[81 = 5.135328 rads (294.232600 degs)
phil9] = 5.124215 rads* (293.595900 degs) phil9] = 5.124215 rads (293.595900 degs)
phi[i0] = 5.144740 rads* (294.771900 degs) phi[10l = 5.144740 rads (294.771900 degs)
phi[ 11 = 3.021143 rads (173.098729 degs) phi[ 11] = 2.983309 rads (170.931000 degs)
phi[ 12] = 5.130233 rads* (293.940700 degs) phi[ 121 = 5.130233 rads (293.940700 degs)
phi[13] = 5.268207 rads* (301.846000 degs) phi[13] = 5.268207 rads (301.846000 degs)
phi[ 14] = 3.389502 rads (194.204177 degs) phi[14] = 3.172427 rads (181.766700 degs)
phi[ 15] = 5.266020 rads* (301.720700 degs) phi[ 15] = 5.266020 rads (301.720700 degs)
phi[16] = 3.190450 rads* (182.799300 degs) phi[16] = 3.190450 rads (182.799300 degs)
phi[ 17] = 3.223166 rads* (184.673800 degs) phi[ 17] = 3.223166 rads (184.673800 degs)
phi[ 18] = 1. 153593 rads* ( 66.096000 degs) phi[ 18] = 1. 153593 rads ( 66.096000 degs)
phi[19] = 3.169434 rads* (181.595200 degs) phi[19] = 3.169434 rads (181.595200 degs)

Energy = - 10.974719 kcal/mol

LP Prediction/Globa! Minimum Difference (inf-norm) = 0.217075 degs
LP Prediction/Global Minimum Quad Function Difference = 2.212808 kcal/mol

Successive LP predicted dihedrals change (inf-norm) = 135.529800 degs

Successive global conformers change (inf-norm) = 0.000000 degs

Energy improvement = 0.000000 kcal/mol

Repeat (y/n)? n
Run Complete...

F. Q" as a Negative Definite Matrix

As stated in Chapter VIII (Section C) if Q' = Q - p.!, where g. = I + rn ax and

Xmax is the maximum eigenvalue of Q, then Q' is negative definite. This can be shown as

follows: Let X and P be any eigenvalue / eigenvector pair for Q, i.e.

Qi = XP Equation 12.1

Since Q' = Q - g 1, then

Q'I, = (Q-pI)ip



93

= (Q - ( I+ ax) ) = (QP - (1 + X,,x) I')

Substituting Equation 12. 1,

Q'p (X~p-(1+ Xm) If) = i - f -XmaxrP

- X'majp P) = ( Xmax1)p

since I _< Xmax,, (I - Xmax - I ) • -1. Thus all eigenvectors of Q are also eigenvectors of

Q and all eigenvalues of Q 'are negative. Hence, the matrix Q'is negative definite. I2


